首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A new adsorbent is synthesized on the basis of silica consecutively modified by polyhexamethylene guanidine and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) for the group preconcentration of Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) followed by determination by inductively coupled plasma atomic emission spectrometry. The adsorbent in the batch mode quantitatively (recovery 98?99%) extracts Fe(III), Al(III) and Cu(II) ions at pH 4.0 and Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) ions at pH 7.0; the time of attainment of an adsorption equilibrium does not exceed 10 min. Consecutive preconcentration at pH 4.0 and 7.0 in the batch and dynamic modes ensures the quantitative separation of Fe(III), Al(III), and Cu(II) from Pb(II), Zn(II), and Mn(II) and their separate determination. The quantitative desorption of metals was attained with 0.5?1.0 M HNO3 (5 or 10 mL). In preconcentration from 200 mL of solution with 5 mL of a desorbing solution, the preconcentration coefficient was equal to 40. The developed procedure was used for the determination of metal ions in river waters of Krasnoyarsk Krai. The results obtained were verified by the added?found method.  相似文献   

2.
The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.  相似文献   

3.
Summary The reaction of Fe(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) is studied in detail and procedures for the sensitive determination of Fe(II) at pH 4.7 (acetate buffer), pH 9.0 (borate buffer) and in the presence of EDTA are optimized. A simultaneous determination of Fe, Cu, Zn, Co and Ni in aqueous medium and of Fe, Cu and Zn in blood serum with Br-PADAP at pH 9.0 using multivariate calibration with PLS evaluation of absorbance data also give satisfactory results.  相似文献   

4.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

5.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

6.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

7.
《Analytical letters》2012,45(9):1807-1820
ABSTRACT

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g?1): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(II)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).  相似文献   

8.
Tewari PK  Singh AK 《Talanta》2001,53(4):823-833
A new chelating resin is prepared by coupling Amberlite XAD-2 with pyrocatechol through an azo spacer, characterized (by elemental analysis, IR and TGA) and studied for preconcentrating Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The sorption is quantitative in the pH range 3.0-6.5, whereas quantitative desorption occurs instantaneously with 2 M HCl or HNO(3) The sorption capacity has been found to be in the range 0.023-0.092 mmol g(-1) of resin. The loading half time (t(1/2)) is 1.4, 4.8, 1.6, 3.2, 2.3 and 1.8 min, respectively for Cd, Co, Cu, Fe, Ni and Zn. The tolerance limits of electrolytes NaCl, NaBr, NaNO(3), Na(2)SO(4) and Na(3)PO(4) in the sorption of all the six metal ions (0.2 mug ml(-1)) are reported. The Mg(II) and Ca(II) are tolerable with each of them (0.2 mug ml(-1)) up to a concentration level of 0.01-1.0 M. The enrichment factor has been found to be 200 except for Fe and Cu for which the values are 80 and 100, respectively. The lowest concentration of metal ion for quantitative recovery is 5, 10, 20, 25, 10 and 10 mug l(-1) for Cd, Co, Cu, Fe, Ni and Zn, respectively. The simultaneous determination of all these metal ions is possible and the method has been applied to determine all the six metal ions in tap and river water samples (RSD相似文献   

9.
Summary In reversed phase—high performance liquid chromatography for metal chelates with 2-(2-thiazolylazo)-5-dimethylaminophenol, an aqueous non-ionic surfactant solution is used as a mobile phase. Among V(V), Fe(III), Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Mn(II), and Al(III), only the V(V) chelate gave a resolved peak by using 0.8% w/w poly(oxyethylene)n-4-nonylphenyl ether (n=20) solution buffered at pH 3.8. V(V) can be selectively separated and sensitively determined.  相似文献   

10.
A 5-formyl-3-(1′-carboxyphenylazo) salicylic acid-bonded silica gel (FCPASASG) chelating adsorbent was synthesized according to a very simple and rapid one step reaction between aminopropyl silica gel (APSG) and 5-formyl-3-(1′-carboxyphenylazo) salicylic acid (FCPASA) and its adsorption characteristics were studied in details. Nine trace metals viz.: Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) can be quantitatively adsorbed by the adsorbent from natural aqueous systems at pH 7.0–8.0. The adsorbed metal ions can be readily desorbed with 1 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, CM,eqm % (Recovery, R%) were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, logKd, are 3.7–6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS).The adsorption capacity of FCPASASG was 0.32–0.43 meq g−1. C and N elemental analyses of the adsorbent (FCPASASG) allowed us to calculate a surface converge of 0.82 mmol g−1. This value compares well with the best values reported for the azo compounds. The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance) and UV spectrometry, potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the FCPASASG adsorbent and the investigated metal ions is proposed to be due to reaction of those metal ions with the salicylic and/or the carboxyphenylazo chelation centers of the FCPASASG adsorbent. Nanogram concentrations (0.07–0.14 ng ml−1) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.  相似文献   

11.
The complexes of Cu, Zn and Cd with 2-(5-bromo-2-pyridylazo)-5-diethylamniphenol, formed on PTFE, were re-extracted with isoamyl alcohol followed by a direct spectrophotometric determination. The collection of Cu(II), Zn(II) and Cd(II) from aqueous solutions was found to be quantitative in alkaline medium at pH 8.0–10.0 (Zn), 7.5–9.2 (Cd) and 9.2 (Cu). Concentration factors up to 120 (Cu) and 50 (Zn, Cd) were achieved.  相似文献   

12.
An SPE method for selective separation-preconcentration of Cu(ll), Zn(II), Ni(II), and Fe(III) on multiwalled carbon nanotubes (MWCNTs) modified by glutaric dihydrazide prior to flame atomic absorption spectrometric determination was investigated. The adsorption was achieved quantitatively on MWCNTs at pH 5.0, and then the retained metal ions on the adsorbent were eluted with 1 M HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg/g for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The LOD values of the method were 0.21, 0.11, 0.24, and 0.27 microg/L for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The RSDs were lower than 3.01%. The method was applied for the determination of analytes in soil, river water, and wastewater samples with satisfactory results.  相似文献   

13.
This work describes the synthesis and characterization of 2-aminothiazole-modified silica gel (SiAT), as well as its application for preconcentration (in batch and column technique) of Cu(II), Ni(II) and Zn(II) in ethanol medium. The adsorption capacities of SiAT determined for each metal ion were (mmol g(-1)): Cu(II)=1.20, Ni(II)=1.10 and Zn(II)=0.90. In addition, results obtained in flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 500 mg of SiAT. The eluent was 2.0 mol L(-1) HCl. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in fuel ethanol using flame AAS for their quantification.  相似文献   

14.
Jain VK  Sait SS  Shrivastav P  Agrawal YK 《Talanta》1997,45(2):397-404
A very stable chelating resin matrix was synthesized by covalently linking o-vanillinthiosemicarbazone (oVTSC) with the benzene ring of the polystyrene-divinylbenzene resin Amberlite XAD-2 through a -NN- group. The resin was used successfully for the separation and preconcentration of copper(II), zinc(II) and lead(II) prior to their determination by atomic absorption spectrophotometry. The total sorption capacity of the resin was 850, 1500 and 2000 mug g(-1) of the resin for Cu(II), Zn(II) and Pb(II), respectively. For the quantitative sorption and recovery of Cu(II), Zn(II) and Pb(II), the optimum pH and eluants were pH 2.5-4.0 and 4 M HCl or 2 M HNO(3) for Cu(II), pH 5.5-6.5 and 1.0-2.0 M HCl for Zn(II) and pH 6.0-7.5 and 3 M HCl or 1 M HNO(3) for Pb(II). Both, the uptake and stripping of these metal ions were fairly rapid, indicating a better accessibility of the chelating sites. The t (1 2 ) values for Cu(II), Zn(II) and Pb(II) were also determined. Limit of tolerance of some electrolytes like NaCl, NaF, NaNO(3), Na(2)SO(4) and Na(3)PO(4) have been reported. The preconcentration factor for Cu(II), Zn(II) and Pb(II) was 90, 140 and 100 respectively. The method was applied for the determination of Cu(II), Zn(II) and Pb(II) in the water samples collected from Sabarmati river, Ahmedabad, India.  相似文献   

15.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

16.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

17.
A method for the preconcentration of Cd(II), Cu(II), Zn(II), and Ni(II) is proposed using a minicolumn filled with silica gel modified by Schiff's base. The retained analytes on the ligand-coated silica gel were recovered with a small volume of HNO3 (nitric acid). The metal ions in the eluent were determined by flame atomic absorption spectrometer (FAAS). Different factors, including the pH of the sample solution, the sample volume, the amount of silica gel, eluent volume and matrix effects for preconcentration were examined. The recoveries for the analytes under optimum working conditions were higher than 95%. The relative standard deviations of the determination were 1.50, 2.10, 2.40, 3.43% for Cu(II), Cd(II), Zn(II) and Ni(II). The limits of detection (3s, n = 10) for Cd(II), Cu(II), Zn(II), and Ni(II) were found to be 3, 5, 5 and 4.7 ngL–1. The proposed method was applied to the analysis of some natural water samples and standard reference aluminum alloy material (NBS SRM 85b).  相似文献   

18.
A method for heavy metal monitoring using spectrophotometric detection is presented. Traces of Cu(II), Pb(II) and Cd(II) at the low microg l(-1) level can be determined simultaneously after both selective removal of metal interferences and preconcentration using 'extraction chromatographic resins'. Lewatit TP807'84, which contains di(2,4,4-trimethylpentyl)phosphinic acid as active component, was used as solid adsorbent. Two minicolumns containing this resin were used: one at pH 3.2 for the removal of interferences, such as Zn(II) and Fe(III), and the other at pH 5.5 for the selective preconcentration of the target analytes. Spectrophotometric determination used FIA methodology with sulfarsazene as chromogenic reagent and partial least-squares multivariate calibration. The method was successfully applied to the analysis of surface waters from the Llobregat river and ground water samples from wells in the Guadiamar basin. Accuracy, expressed in terms of recoveries, was in the range 80-120% and relative standard deviations were below 10%.  相似文献   

19.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

20.
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL−1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号