首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
水热合成Fe3+掺杂ZnO复合材料及其光催化活性   总被引:1,自引:0,他引:1  
以Zn(Ac)2·2H2O、Fe(NO3)3·9H2O和NaOH为原料,采用水热法合成了Fe3+掺杂ZnO复合材料. 并用X射线衍射和扫描电子显微镜测试技术对合成样品的结构和形貌进行了表征. 结果表明,Fe3+掺杂ZnO合成产物为直棒状,直径为500 nm,长度为3 μm左右. 样品的紫外可见漫反射分析结果表明,在300~500 nm紫外可见光区域均有强的吸收. Fe3+掺杂ZnO作为光催化剂降解有机染料性能优于纯ZnO材料.  相似文献   

2.
梁英  刘英 《应用化学》2009,26(10):1247-1249
以Zn(Ac)2•2H2O、Fe(NO3)3•9H2O和NaOH为原料,采用水热法合成了Fe掺杂ZnO复合材料。并用x射线衍射和扫描电子显微镜技术对合成样品的结构和形貌进行了表征,Fe掺杂ZnO合成产物为直棒状,直径为500 nm,长度为3 µm左右。样品的紫外可见漫反射分析,在300~500 nm紫外可见光区域均有强的吸收。利用Fe掺杂ZnO作为光催化剂降解有机染料,发现对于光催化降解有机染料有较好的降解功能,且光降解性能优于纯ZnO材料。  相似文献   

3.
ZnO是一种重要的Ⅱ-Ⅵ族半导体材料,其能带宽度约为3.37eV,在光电子学、传感、光催化、发电等诸多领域都具有巨大的应用潜力。本文采用简单的离子交换和热蒸发法成功制备了Fe掺杂ZnO空心微球,并利用扫描电镜、透射电镜、X射线粉末衍射仪对其形貌、结构以及成分等进行了详细的表征。光吸收测试证明Fe元素掺杂能够扩展ZnO的光吸收波段,实现波长375~600nm的光波吸收。另外,光催化实验证明Fe掺杂ZnO空心微球能够有效地促进罗丹明B的降解,表明合成的Fe掺杂ZnO空心微球是一种优异的光催化剂。  相似文献   

4.
一锅法合成了镁掺杂的ZnO量子点, 利用APTES对其进行表面包覆, 并采用XRD、TEM、UV-Vis、PL和FTIR等对材料进行了表征。结果表明镁掺杂能明显增强荧光发光强度, 在合适的掺杂浓度(30%)下其量子产率由11%增加到33%。通过APTES的表面包覆使镁掺杂的ZnO量子点具有良好的水溶性和荧光稳定性, 可用于MCF-7细胞成像研究。  相似文献   

5.
一锅法合成了镁掺杂的ZnO量子点,利用APTES对其进行表面包覆,并采用XRD、TEM、UV-Vis、PL和FTIR等对材料进行了表征。结果表明镁掺杂能明显增强荧光发光强度,在合适的掺杂浓度(30%)下其量子产率由11%增加到33%。通过APTES的表面包覆使镁掺杂的ZnO量子点具有良好的水溶性和荧光稳定性,可用于MCF-7细胞成像研究。  相似文献   

6.
为提高ZnO的光催化性和稳定性,扩展对光的吸收范围,以乙二胺四乙酸(H4EDTA)为配体形成配位前驱体,通过低温热分解配位前驱体法制备了Gd3+掺杂ZnO复合物Zn1-xGdxO2(x=0~0.1)纳米颗粒。 采用X射线粉末衍射(XRD)、红外光谱法(FT-IR)、扫描电子显微镜(SEM)、荧光光谱法(FL)、紫外可见漫反射光谱法(UV-Vis DRS)、交流阻抗(EIS)以及动态光电流响应(i-t)等多种手段研究掺杂比例对氧化锌物相、表面形貌、光学性以及光电响应性等的影响。 结果表明,Gd3+掺杂摩尔分数低于3%时,产物为单相纤锌矿ZnO,提高掺杂比例(>3%)不仅使ZnO晶格萎缩,同时还出现少量Gd2O3第二相,且晶粒随掺杂摩尔分数的增加而降低。 Gd3+掺杂使ZnO能带结构发生改变,其价带、导带和带隙等各值都随着掺杂摩尔分数的增加而降低。 I-t结果表明,适量掺杂可提高ZnO的光电响应能力,其中掺杂摩尔分数1%所得ZnO的光电流密度最大(10 mA/m2)。甲基橙(MO)的光降解结果显示,Gd3+掺杂能提高ZnO的催光化性,其中1%掺杂对ZnO的催化性提高最大。 最后还对ZnO的催化选择性和耐酸碱性进行了简单研究。  相似文献   

7.
N掺杂p-型ZnO的第一性原理计算   总被引:3,自引:0,他引:3  
采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法, 计算了纤锌矿ZnO和N掺杂p-型ZnO晶体的电子结构, 分析了N掺杂p-型ZnO晶体的能带结构、电子态密度、差分电荷分布以及H原子和N2分子对p-型掺杂ZnO的影响.  相似文献   

8.
采用柠檬酸溶胶-凝胶法制备了ZnO及M2+掺杂ZnO纳米粉晶(M=Cu、Cd、Ag、Fe),用现代测试技术表征了样品的组成、结构和形貌,以大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)和白色念珠菌(Candida albicans)为测试菌株,用抑菌圈、最小抑菌浓度和最小杀菌浓度等方法研究了样品在日光照射下的抗菌活性。结果表明,与母体ZnO相比,Cu、Ag、Cd掺杂样品的抗菌性能明显地增强,这可能是由于掺杂金属离子置换Zn2+生成了晶格缺陷和电荷缺陷,阻止了光生电子和光生空穴对的复合从而增强了光催化活性和抗菌活性。  相似文献   

9.
运用溶胶-凝胶法将纳米ZnO负载于ZSM-5制光催化剂,用Ag、Fe、Cu掺杂改性ZnO/ZSM-5光催化性能并探究光催化剂ZnO/ZSM-5降解罗丹明B(RhB)模拟印染废水性能。以SEM和XRD分析手段对材料进行表征;探究溶液pH、底物初始浓度、光催化剂的用量及光强等因素对ZnO/ZSM-5降解RhB效果的影响。结果表明:ZnO/ZSM-5降解RhB印染废水最佳条件:ZnO/ZSM-5用量0.1 g·L~(-1)、初始浓度5 mg·L~(-1)、pH为7的RhB溶液、在紫外光源20 W的条件下降解RhB速率高达98.8%;Ag、Fe、Cu掺杂量分别:5%Ag-ZnO/ZSM-5、3%Fe-ZnO/ZSM-5、0.01%Cu-ZnO/ZSM-5时RhB的降解率分别高达97.52%、90.07%、87.12%;Ag、Fe、Cu共同掺杂的3%Fe-0.1%Cu-5%Ag-ZnO/ZSM-5催化效果优于单种金属元素掺杂改性材料。  相似文献   

10.
利用包括磁控溅射和热氧化的两步法在Si(111)衬底上制备了Sn掺杂ZnO纳米针.首先用磁控溅射法在Si(111)衬底上制备Sn:Zn薄膜,然后在650℃的Ar气氛中对薄膜进行热氧化,制备出Sn掺杂ZnO纳米针.样品的结构、成分和光学性质采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDX)谱和光致发光(PL)光谱等技术手段进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶Sn掺杂ZnO纳米针,Sn掺杂量为2.5%(x,原子比),底部和头部直径分别为200-500 nm和40 nm,长度为1-3μm,结晶质量较高.室温光致发光光谱显示紫外发光峰比纯ZnO的发光峰稍有蓝移,这可归因于能谱分析中探测到的Sn的影响.基于本实验的实际条件,简单探讨了Sn掺杂ZnO纳米针的生长机制.  相似文献   

11.
利用水热法合成了Fe3+掺杂的三维分级纳米Bi2WO6,借助X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、透射电镜(HRTEM)、能谱(EDS)、紫外可见漫反射(UV-Vis-DRS)等测试手段对所得样品的相组成、形貌和谱学特征进行了表征。选择罗丹明B为模型污染物研究所得样品在可见光下的催化活性。结果表明,Fe3+掺杂Bi2WO6为新颖的分级纳米结构,且Fe3+掺杂能有效提高Bi2WO6的光催化活性,Fe3+掺杂量对Bi2WO6活性的影响显著;实验结果还表明,所得Fe3+掺杂Bi2WO6催化剂的稳定性较好,易于回收。此外,还对Fe3+掺杂Bi2WO6的光催化活性增强机理进行了研究,缺电子的Fe3+作为电子捕获中心有利于促进光生电子-空穴对的分离,从而提高Bi2WO6的光催化活性。  相似文献   

12.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   

13.
Co掺杂ZnO纳米棒的水热法制备及其光致发光性能   总被引:7,自引:0,他引:7  
以Zn(NO3)2·6H2O 和Co(NO3)2·6H2O为原料, 通过水热法在较低温度下制备了纯ZnO和Co掺杂的ZnO(ZnO:Co)纳米棒. 利用XRD、EDS、TEM和HRTEM对样品进行了表征, 结合光致发光(PL)谱研究了样品的PL性能. 结果表明, 水热法制备纯ZnO和ZnO:Co纳米棒均具有较好的结晶度. Co2+是以替代的形式进入ZnO晶格, 掺入量为2%(原子分数)左右. 纯的ZnO纳米棒平均直径约为20 nm, 平均长度约为180 nm; 掺杂样品的平均直径值约为15 nm, 平均长度约为200 nm左右; Co掺杂轻微地影响ZnO纳米棒的生长. 另外, Co掺杂能够调整ZnO纳米棒的能带结构、提高表面态含量, 进而使得ZnO:Co纳米棒的紫外发光峰位红移, 可见光发光能力增强.  相似文献   

14.
Fe3+改性纳米ZnO光催化降解壬基酚聚氧乙烯醚   总被引:2,自引:0,他引:2  
采用氨浸法制备了不同Fe3 含量的Fe3 /ZnO光催化剂,并用X射线衍射、N2吸附、X射线光电子能谱和紫外-可见漫反射光谱对纳米Fe3 /ZnO进行了表征.以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光下考察了纳米Fe3 /ZnO的光催化活性.结果表明,该方法能成功地将Fe掺杂到ZnO晶体上,且随着Fe3 添加量的增加,ZnO的晶粒尺寸逐渐减小,比表面积逐渐增大.与纳米ZnO样品相比,Fe3 /ZnO中Fe2p结合能减小,而Zn2p和O1s结合能增大,ZnO表面的羟基氧和吸附氧含量增加,光催化活性提高.当Fe3 的添加量大于0.5%时,Fe3 /ZnO样品的吸收光谱发生红移,在可见光区出现吸收.光催化降解结果显示,0.5?3 /ZnO样品的光催化活性最高,在紫外光和可见光照射3h后对NPE-10的降解率分别比纯ZnO提高18%和69%.  相似文献   

15.
冯秋霞  于鹏  王兢  李晓干 《物理化学学报》2015,31(12):2405-2412
采用静电纺丝法成功制备了Y掺杂的ZnO纳米纤维.并通过X射线衍射(XRD),扫描电子显微镜(SEM),能量色散X射线(EDX),透射电子显微镜(TEM)以及热重差热分析(TG-DTA)等手段对样品的结构和形貌进行了表征分析.同时用纯的ZnO和Y掺杂的ZnO纳米纤维制备了传感器,对浓度为(1-200)×10-6 (体积分数)丙酮的气敏特性进行了测试分析.测试结果表明,可以通过简单控制纳米纤维中Y的含量,来微调该传感器的气敏特性.同时也发现通过Y掺杂, ZnO纳米纤维对丙酮的气敏特性有所改善,表现出很高的响应.纯ZnO和Y掺杂ZnO制成的传感器对几种潜在干扰气体表现出良好的选择性,比如氨气、苯、甲醛、甲苯以及甲醇.本文最后也讨论了该传感器的气敏作用机理.  相似文献   

16.
采用溶胶 -凝胶法制备了 Ti O2 / Si O2 和不同浓度 Fe3 掺杂的 Fe3 / Ti O2 / Si O2 复合纳米粉末 ,并利用XRD、BET、UV-vis等手段研究了 Ti O2 / Si O2 及掺铁形成的 Fe3 / Ti O2 / Si O2 复合微粒的表面结构形态变化 ,以及对污染物 NO- 2 光催化降解的影响 .结果表明 ,Fe3 / Ti O2 / Si O2 (ω( Fe3 ) =1 .5 % ,m( Ti)∶ m( Si) =2∶ 1 )具有最佳活性 ,样品呈晶化度较低的锐钛矿结构 .Fe3 掺杂导致晶粒的增大 ,稳定性降低 ,大大提高了半导体的光催化活性 ,有利于对低浓度 NO- 2 的光催化降解  相似文献   

17.
采用溶剂热法合成了不同Fe掺杂含量的Fe-CeO_2纳米粉体及不同氮源掺杂的N-10%Fe-CeO_2(n_(Fe)/(n_(Fe)+n_(Ce))=10%)纳米粉体。利用TEM、XRD、XPS、Raman和UV-Vis等技术对其微观结构与形貌进行了表征,并通过降解亚甲基蓝溶液对其光催化性能进行了研究。结果表明,Fe掺杂可以提高CeO_2的光催化性能,以10%Fe-CeO_2催化效率最高,对亚甲基蓝的降解率从纯CeO_2的67%提高到95%。而N的掺杂可调节10%Fe-CeO_2催化性能。以浓氨水为氮源的N-10%Fe-CeO_2(NH_3·H_2O-N-10%Fe-CeO_2)的降解率可进一步提高到97%,并且具有较好的稳定性,经5次循环使用,对亚甲基蓝的光催化降解率仍高达89%。CeO_2催化活性的提高主要由于掺杂Fe和N改变了CeO_2的晶体结构与能带结构,促进了光生电子与空穴的产生与催化反应。  相似文献   

18.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Y和Cu单掺杂ZnO、Y-Cu共掺杂ZnO的电子结构和光学性质. 计算结果表明, 在本文的掺杂浓度下, Y和Cu单掺杂可以提高ZnO的载流子浓度, 从而改善ZnO的导电性, Y-Cu共掺时ZnO半导体进入简并状态, 呈现金属性. Y 掺杂ZnO可以提高体系在紫外区域的吸收, 而Cu掺杂ZnO在可见光和近紫外区域发生吸收增强现象, 其中由于Y离子和Cu离子之间的协同效应, Y-Cu共掺杂ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加, 因此Y-Cu共掺杂ZnO可以用于制作光电感应器件.  相似文献   

19.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Co和Y单掺杂ZnO、Co-Y不同配位共掺杂ZnO的电子结构和光学性质。计算结果表明,在本文的掺杂浓度下,Co和Y单掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性,Co-Y共掺时ZnO半导体进入简并状态,呈现金属性。Co掺杂ZnO会在可见光和近紫外区域发生吸收增强现象,而Y掺杂ZnO可以提高体系在紫外区域的吸收,其中由于Co离子和Y离子之间的协同效应,Co-Y共掺ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加,因此Co-Y共掺杂ZnO可以用于制作光电感应器件。  相似文献   

20.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Co和Y单掺杂ZnO、Co-Y不同配位共掺杂ZnO的电子结构和光学性质。计算结果表明,在本文的掺杂浓度下,Co和Y单掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性,Co-Y共掺时ZnO半导体进入简并状态,呈现金属性。Co掺杂ZnO会在可见光和近紫外区域发生吸收增强现象,而Y掺杂ZnO可以提高体系在紫外区域的吸收,其中由于Co离子和Y离子之间的协同效应,Co-Y共掺ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加,因此Co-Y共掺杂ZnO可以用于制作光电感应器件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号