首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.  相似文献   

2.
The cationic polymerization of electron rich monomers such as vinyl ethers, vinyl furane, and cyclopentadiene on silica surfaces can be initiated by aryl methyl halides. The reactions yield always soluble polymers (by heterogeneous catalysis) and novel polymer/silica hybrid materials. The link between polymer and solid is caused by covalent Si-O-C bonds, by network formation of the polymers during the chain growth, or by a combination of both of them. The analysis of the polymer structures on the surface by 1H MAS NMR spectroscopy in suspension and by solid state 13C CP MAS NMR spectroscopy is described. Proof of Si-O-C bonds via DRIFT spectroscopy and 13C CP MAS NMR spectroscopy is given. The most effective method of irreversibly linking the polymer to the silica surface is the network formation. Polyvinyl ethers are bound strongly to the surface, as can be shown by FTIR measurements, but the linkage is not stable due to the Si-O-C bonds' susceptibility to hydrolysis. Poly-cyclopentadienes (PCPD) are linked to the surface by Si-O-C bonds, which show an extraordinary high resistance to acids and bases. Si-O-C bond formation of poly-2-vinyl furane could not yet be detected by 13C CP MAS NMR spectroscopy and DRIFT spectroscopy. In this case the high degree of coating derives from the bifunctionality of 2-vinyl furane: it may undergo Friedel-Crafts-alkylation at the 5-position of the furane ring as well as chain polymerization via the vinyl group at the 2-position.  相似文献   

3.
The structure and dynamics of surfactant and polymer chains in intercalated poly(epsilon-caprolactone)/clay nanocomposites are characterized by (31)P magic-angle spinning (MAS) and (13)C cross-polarization MAS NMR techniques. To obtain hybrid materials with the low polymer content required for this study, in situ intercalative polymerization was performed by adapting a published procedure. After nanocomposite formation, the chain motion of the surfactant is enhanced in the saponite-based materials but reduced in the Laponite ones. Compared to the starting clay, the trans conformer population of the surfactant hydrocarbon chain in the nanocomposite decreases for the saponite systems. Mobility of the polymer chain is higher in the nanocomposites than in the bulk phase. The charge of the modified saponite does not significantly influence chain mobility in the nanocomposites.  相似文献   

4.
The calcium silicate hydrate (C-S-H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO(2) solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by (27)Al and (29)Si MAS NMR spectroscopy. (27)Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the (27)Al isotropic chemical shift (delta(iso)) and quadrupolar product parameter (P(Q) = C(Q)) for tetrahedrally coordinated Al incorporated in the C-S-H phase and for a pentacoordinated Al site. The latter site may originate from Al(3+) substituting for Ca(2+) ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated Al displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase (delta(iso) = 5.0 ppm and P(Q) = 1.20 MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral Al incorporated in the C-S-H phase has been quantitatively determined from (27)Al MAS spectra at 14.09 T and indirectly observed quantitatively in (29)Si MAS NMR spectra by the Q(2)(1Al) resonance at -81.0 ppm. A linear correlation is observed between the (29)Si MAS NMR intensity for the Q(2)(1Al) resonance and the quantity of Al incorporated in the C-S-H phase from (27)Al MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at delta(iso)((29)Si) = -81.0 ppm to a Q(2)(1Al) site in the C-S-H phase and the assignment of the (27)Al resonance at delta(iso)((27)Al) = 74.6 ppm, characterized by P(Q)((27)Al) = 4.5 MHz, to tetrahedrally coordinated Al in the C-S-H. Finally, it is shown that hydration of wPc in a NaAlO(2) solution results in a C-S-H phase with a longer mean chain length of SiO(4) tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.  相似文献   

5.
A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)相似文献   

6.
<正> 80年代出现的光活性高聚物—聚甲基丙烯酸三苯甲酯(PTrMA)是由非手性单体经不对称阴离子聚合得到的。近年来,PTrMA作为手性固定相在分离手性化合物方面得到了越来越多的实际应用。由于聚合物侧基上的三个苯基产生的大位阻,使它具  相似文献   

7.
Three series of poly(ethylene glycol) (PEG)-based polymers were synthesized and characterized with respect to their physical properties. Polyoxyethylene-polyoxypropylene (POEPOP), polyoxyethylene-polyoxetane (SPOCC), and polyoxyethylene-polystyrene (POEPS-3) were synthesized respectively by anion polymerization, cation polymerization, and radical polymerization. Both bulk and suspension modes were used to synthesize the polymers from derivatized PEG monomers (PEG 400, PEG 900, and PEG 1500). The three supports were compared with two commercially available PEG-grafted supports (TentaGel S OH, ArgoGel-OH) and two polystyrene supports (aminomethylated polystyrene [PS-NH2] and macroporous aminomethylated polystyrene [PLAMS]) with respect to their swelling properties, loading, NMR spectral quality, as well as solvent and reagent accessibility. Loadings of 0.3-0.7 mmol/g were obtained for the PEG-based resins. Swelling of the PEG-based resins was determined to be higher than that of the PEG-grafted resins and polystyrene supports. The PEG-based resins gave better resolved high-resolution NMR spectra than the PEG-grafted resins when examined by magic angle spinning nanoprobe (MAS) NMR spectroscopy. Moreover, fluorescence quenching of polymer bound 2-amino-benzoate by protonation with p-toluenesulfonic acid showed moderate to fast diffusion through the polymer depending on the solvent and the polymer matrix.  相似文献   

8.
以核磁共振波谱和溴加成法分析N-苯基-双环[2.2.1]庚-5-烯-2,3-二甲酰亚胺的聚合物的化学结构。聚合物分子具有含内、外式双环[2.2.1]庚-5-烯双键和环戊烯双键的结构单元。半定量地测定了各类双键的含量。分子的饱和链段有5,7-位相连的外式构型和5,6-位相连的内式构型的双环[2.2.1]庚烷的结构单元。结果表明,聚合过程中有构型的转变,重排反应,以及不同的链增长途径。  相似文献   

9.
从二甲苯出发,经过溴甲基化反应、氧化反应、酯化反应和溴代反应,合成了一种四官能团的引发剂,4,6-二(溴甲基)-1,3-苯二甲酸二甲酯.用该引发剂引发苯乙烯进行原子转移自由基聚合,实验结果表明聚合反应具有活性自由基聚合的特征.通过苯乙烯的本体聚合反应获得了分子量可控、双酯基位于聚合物链中间的聚苯乙烯.经过水解反应,使聚合物中的双酯基被水解成双羧基,从而得到了结构对称的两亲性聚合物,双羧基聚苯乙烯.利用该聚合物具有分子识别的特性,与十二烷胺形成了离子键超分子化合物.此工作为超分子星形聚合物的设计合成提供了简便快捷的方法.  相似文献   

10.
A functional monomer with a pendant azide moiety, 2‐azidoethyl methacrylate (AzMA), was polymerized via reversible addition‐fragmentation chain transfer (RAFT) polymerization with excellent control over the molecular weight distribution (PDI = 1.05–1.15). The subsequent copper‐catalyzed Huisgen 1,3‐dipolar cycloadditions of phenyl acetylene with polyAzMA was achieved at room temperature with high conversion. The resulting functional polymer exhibited identical 1H NMR and IR spectra with the polymer of the same molecular structure but prepared by a prefunctionalization approach, confirming the retention of the azide side chains during the RAFT polymerization of AzMA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4300–4308, 2007  相似文献   

11.
(91)Zr (I = 5/2) solid-state NMR (SSNMR) spectra of the zirconocene compounds, Cp(2)ZrCl(2), Cp*(2)ZrCl(2) (1), Cp(2)ZrBr(2) (2), (Me(3)SiC(5)H(4))(2)ZrBr(2) (3), O(Me(2)SiC(5)H(4))(2)ZrBr(2) (4), (1,3-C(5)H(3))(SiMe(2)OSiMe(2))(2)(1,3-C(5)H(3))ZrBr(2) (5), Ind(2)ZrCl(2) (6), Cp(2)ZrMeCl (7), Cp(2)ZrMe(2) (8), and [Cp(2)ZrMe][MeB(C(6)F(5))(3)] (9) have been acquired. Static (91)Zr SSNMR spectra have been acquired for all complexes at magnetic fields of 9.4 and 21.1 T. Cp(2)ZrCl(2) and complexes 1 to 5 possess relatively narrow central transition powder patterns which allows for magic-angle spinning (MAS) (91)Zr solid-state NMR spectra to be acquired at a moderate field strength of 9.4 T. Complexes 6 to 9 possess ultrawideline central transition SSNMR spectra necessitating piece-wise acquisition techniques. From the static and MAS (91)Zr SSNMR spectra, it is possible to measure (91)Zr electric field gradient (EFG) and chemical shift (CS) tensor parameters, as well as the Euler angles which describe their relative orientation. Basis sets and methods for the accurate quantum chemical calculation of (91)Zr EFG and CS tensors have been identified. The origin of the observed EFG and CS tensor parameters are further investigated by visualization of the EFG and CS tensor orientations within the molecular frames. Correlations between the observed and calculated NMR tensor parameters and molecular symmetry and structure are made. All of these observations suggest that (91)Zr SSNMR spectroscopy can be utilized to probe the molecular structure of a variety of homogeneous and heterogeneous olefin polymerization catalysts.  相似文献   

12.
This paper presents the high‐resolution 13C and 15N cross‐polarization magic angle spinning (CP/MAS) NMR spectra of three natural melanin solids: Sepia officinalis melanin, Sepia officinalis melanin free acid (MFA) and Human hair melanin. The functional group characterization of Human hair melanin by NMR is the first to date and the 13C CP/MAS NMR spectra reported here show improved resolution of chemically inequivalent sites. The observed spectral regions of the solid melanin samples can be assigned to the postulated structural unit of the polymer chain of Sepia MFA derived from solution‐state NMR studies. To assist in the assignment of functional groups in the spectra, the solid‐state CP/MAS NMR spectra are compared with high‐resolution 13C and 15N CP/MAS spectra of four model compounds, L ‐dopa, dopamine, 2‐methoxycarbonyl‐3‐ethoxycarbonyl‐4‐methylpyrrole and ethyl 5,6‐dimethoxyindole‐2‐carboxylate. To aid further in the assignment of protonated and non‐protonated carbon atoms, CP contact time dependence and non‐quaternary carbon suppression (NQS) experiments were performed on the melanin samples. The 15N CP/MAS spectra of the melanin samples confirm the presence of indole and pyrrole units in the melanin polymer chain. The NMR peaks observed in all of the melanin samples are relatively broad, presumably owing to the presence of free radicals. Electron spin resonance (ESR) data shows that all three melanin samples contain localized free radicals (g = 2.007), with the Sepia melanin containing a 10‐fold higher free radical density than Human hair melanin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.  相似文献   

14.
Structure determinations of siliceous zeolite-sorbate host-guest complexes by solid-state NMR require highly resolved 29Si MAS NMR spectra. As the temperature is lowered, the 29Si MAS NMR spectra of many zeolite-sorbate complexes become broadened such that the resolution of the individual 29Si peaks is lost, limiting the application of solid-state NMR for structure determination. It is shown that the 29Si peak widths are related to the 29Si T2 relaxation times and that the source of the 29Si relaxation and the line broadening is paramagnetic molecular oxygen in the channels of the zeolite. Removal of the oxygen by purging the sample with nitrogen gas leads to a dramatic increase in the resolution of the 29Si MAS NMR spectrum of the p-dibromobenzene/ZSM-5 complex. An analysis of the individual 29Si T1 relaxation times reveals that the oxygen molecules are localized mainly in the zigzag channels of ZSM-5, suggesting that the p-dibromobenzene molecules are located in the channel intersections.  相似文献   

15.
We studied the mechanism of the chain-growth polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene (1) with Ni(dppp)Cl2 [dppp = 1,3-bis(diphenylphosphino)propane], in which head-to-tail poly(3-hexylthiophene) (HT-P3HT) with a low polydispersity is obtained and the M(n) is controlled by the feed ratio of the monomer to the Ni catalyst. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra showed that the HT-P3HT uniformly had a hydrogen atom at one end of each molecule and a bromine atom at the other. The reaction of the polymer with aryl Grignard reagent gave HT-P3HT with aryl groups at both ends, which indicates that the H-end was derived from the propagating Ni complex. The degree of polymerization and the absolute molecular weight of the polymer could be evaluated from the 1H NMR spectra of the Ar/Ar-ended HT-P3HT, and it was found that one Ni catalyst molecule forms one polymer chain. Furthermore, by reaction of 1 with 50 mol % Ni(dppp)Cl2, the chain initiator was found to be a bithiophene-Ni complex, formed by a coupling reaction of 1 followed by insertion of the Ni(0) catalyst into the C-Br bond of the dimer. On the basis of these results, we propose that this chain-growth polymerization involves the coupling reaction of 1 with the polymer via the Ni catalyst, which is transferred intramolecularly to the terminal C-Br bond of the elongated molecule. We call this mechanism "catalyst-transfer polycondensation".  相似文献   

16.
Polymerization of acrolein(AL) in the presence of imidazole(Im) has been investigated in tetrahydrofuran or methanol below room temperature. The polymers obtained, white or pale yellow powders, were found to be composed of vinyl polymer with one Im group attached and having an aldehyde side chain, of which 70–80 mole % of the aldehyde revealed bridge structure. The number-average molecular weight (M n) of these polymers was determined to be in the range of 317 to 691. The rate of polmerization Rp was expressed by the equation, R + k[Im] [AL]2.

The addition of water or dimethyl sulfoxide accelerated the polymerization reaction, while the presence of benzaldehyde or N,N'-dimethylformamide decreased Rp. The structure of addition products in the initial polymerization step was confirmed by IR and NMR spectra, and the observations of polymerization system was carried out by UV and NMR spectra. The polymerization mechanisms were discussed on the basis of these results.  相似文献   

17.
设计并合成了一种新型含甲酰基同时又含β-蒎烯单元的新单体2-β-蒎氧基-5-乙烯基苯甲醛(POVB),选择苯基双硫代乙酸1-苯基乙酯(PEPDA)为RAFT试剂、以AIBN为引发剂、在60℃下THF中实现了POVB的"活性"/可控RAFT自由基聚合.单体浓度半对数ln([M]0/[M])与聚合时间符合线性关系,聚合过程呈现一级动力学特征;聚合物分子量(Mn)随单体转化率几乎线性增加,而且整个反应过程中分子量分布(Mw/Mn1.2)保持在较窄的范围.1H-NMR的分析进一步证实了聚合物链的末端精细结构.此外,CD谱结果表明手性单元β-蒎烯基能赋予聚合物以光学活性.  相似文献   

18.
Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.  相似文献   

19.
Solid phase synthesis has become a routine technique in combinatorial chemistry. The need in analytical methods to characterize nondestructively resin bound molecules has been fulfilled by the introduction of High Resolution Magic Angle Spinning (HR MAS) NMR of solvent swollen beads. HR MAS NMR can give solution like proton NMR spectra and one- and two-dimensional NMR techniques are amenable, allowing detailed structure analysis. Recent developments are the application of a diffusion filter to suppress solvent signals and dipolar recoupling techniques to gain spatial information. HR MAS NMR has been applied to monitor reactions and elucidate reaction products.  相似文献   

20.
We report chemical shift assignments of the drug-resistant S31N mutant of M2(18-60) determined using 3D magic-angle-spinning (MAS) NMR spectra acquired with a (15)N-(13)C ZF-TEDOR transfer followed by (13)C-(13)C mixing by RFDR. The MAS spectra reveal two sets of resonances, indicating that the tetramer assembles as a dimer of dimers, similar to the wild-type channel. Helicies from the two sets of chemical shifts are shown to be in close proximity at residue H37, and the assignments reveal a difference in the helix torsion angles, as predicted by TALOS+, for the key resistance residue N31. In contrast to wild-type M2(18-60), chemical shift changes are minimal upon addition of the inhibitor rimantadine, suggesting that the drug does not bind to S31N M2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号