首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hu Y  Mechref Y 《Electrophoresis》2012,33(12):1768-1777
The glycomic profiling of purified glycoproteins and biological specimen is routinely achieved through different analytical methods, but mainly through MS and LC-MS. The enhanced ionization efficiency and improved tandem MS interpretation of permethylated glycans have prompted the popularity of this approach. This study focuses on comparing the glycomic profiling of permethylated N-glycans derived from model glycoproteins and human blood serum using MALDI-MS as well as RP-LC-MALDI-MS and RP-LC-ESI-MS. In the case of model glycoproteins, the glycomic profiles acquired using the three methods were very comparable. However, this was not completely true in the case of glycans derived from blood serum. RP-LC-ESI-MS analysis of reduced and permethylated N-glycans derived from 250 nl of blood serum allowed the confident detection of 73 glycans (the structures of which were confirmed by mass accuracy and tandem MS), while 53 and 43 structures were identified in the case of RP-LC-MALDI-MS and MALDI-MS analyses of the same sample, respectively. RP-LC-ESI-MS analysis facilitates automated and sensitive tandem MS acquisitions. The glycan structures that were detected only in the RP-LC-ESI-MS analysis were glycans existing at low abundances. This is suggesting the higher detection sensitivity of RP-LC-ESI-MS analysis, originating from both reduced competitive ionization and saturation of detectors, facilitated by the chromatographic separation. The latter also permitted the separation of several structural isomers; however, isomeric separations pertaining to linkages were not detected.  相似文献   

2.
The development of a general method for the purification and quantitative glycomic analysis of human plasma samples to characterize global glycosylation changes shall be presented. The method involves multiple steps, including the depletion of plasma via multi-affinity chromatography to remove high abundant proteins, the enrichment of the lower abundant glycoproteins via multi-lectin affinity chromatography, the isotopic derivatization of released glycans, and quantitative analysis by MALDI-TOF MS. Isotopic derivatization of glycans is accomplished using the well-established chemistry of reductive amination to derivatize glycans with either a light analog (12C anthranilic acid) or a heavy analog (13C7 anthranilic acid), which allows for the direct comparison of the alternately labeled glycans by MALDI-TOF MS. The method displays a tenfold linear dynamic range for both neutral and sialylated glycans with sub-picomolar sensitivity. Additionally, by using anthranilic acid, a very sensitive fluorophore, as the derivatization reagent, the glycans can be analyzed by chromatography with fluorescence detection. The utility of this methodology is highlighted by the many diseases and disorders that are known to either show or be the result of changes in glycosylation. A method that provides a generic approach for sample preparation and quantitative data will help to further advance the field of glycomics.  相似文献   

3.
Aberrant glycosylation of proteins and lipids has been implicated in many human diseases, thus prompting the need for reliable analytical methods that permit dependable quantification of glycans originating from biological specimens. MS of permethylated glycans is currently employed to monitor disease-related aberrant glycosylation of proteins and lipids. However, enhancing the sensitivity of this type of analysis is still needed. Here, analysis of permethylated glycans at enhanced sensitivity is attained through miniaturized solid-phase permethylation and online solid-phase purification. Solid-phase permethylation method was miniaturized by reducing the amount of sodium hydroxide beads (one-third the original amount) packed in microspin columns. The efficiency of glycan permethylation was not adversely affected by this reduction. Online solid-phase purification of permethylated N-glycans derived from model glycoproteins, such as fetuin, α-1 acid glycoprotein and ribonuclease B, offered more sensitive and reproducible results than offline liquid-liquid and solid-phase extractions. Online solid-phase purification method described here permitted a 75% increase in signal intensities of permethylated glycans relative to offline purification methods. This is mainly due to the minimized sample handling associated with an online cleaning procedure. The efficiency and utility of online solid-phase purification was also demonstrated here for N-glycans derived from human blood serum. Online solid-phase purification permitted the detection of 73 N-glycan structures, while only 63 glycan structures were detected in the case of samples purified through liquid-liquid extraction. The intensities of the 63 structures that were detected in both cases were 75% higher for samples that were purified through the online method.  相似文献   

4.
In contrast with conventional drugs, biopharmaceuticals are highly complex molecules with remarkable heterogeneity. Protein glycosylation is an inherent source of this heterogeneity and also affects the safety, efficacy, and serum half-life of therapeutic glycoproteins. Therefore analysis of the glycan pattern is an important issue for characterization and quality control in the biopharmaceutical industry. In this publication we describe a complete workflow for the analysis of protein N-glycans. The sample-preparation procedure, consisting of the release of the N-glycans by PNGase-F, followed by fluorescence labeling with 2-aminobenzamide and removal of excess label, was optimized to avoid alteration of the glycan sample. Subsequently, labeled glycans were analyzed by hydrophilic-interaction liquid chromatography (HILIC) with fluorescence detection. The developed method was validated for analysis of antibody N-glycans. To demonstrate the accuracy of the method an antibody sample was additionally analyzed by an orthogonal method. The antibody was digested with lysyl endopeptidase and the (glyco-)peptides were analyzed by RP-HPLC–MS. The consistency of the results between these two methods demonstrates the reliability of the glycan analysis method introduced herein.  相似文献   

5.
Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.
Figure
?  相似文献   

6.
Structural characterization of sulfated glycans through mass spectrometry (MS) has been often limited by their low abundance in biological materials and inefficient ionization in the positive-ion mode. Here, we describe a microscale method for sequentially enriching sulfated glycans according to their degree of sulfation. This method is based on modifying the binding ability of strong anion-exchange material through the use of different sodium acetate concentrations, thus enabling fairly selective binding and a subsequent elution of different glycans according to their degree of sulfation. Before this enrichment, the negative charge on the sialic acid, which is commonly associated with such glycans, was eliminated through permethylation that is used to enhance the positive-ion mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) signal for all glycans. This enrichment approach minimizes competitive ionization between sulfated and neutral glycans, as well as that between sulfated species with a different degree of sulfation. The described method was initially optimized using sulfated oligosaccharide standards, while its potential has been verified for the sulfated N-glycans originated from the bovine thyroid-stimulating hormone (bTSH), a glycoprotein possessing mono- and disulfated N-glycans. This enhancement of the MALDI-MS signal facilitates analysis of some otherwise undetected components.  相似文献   

7.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been a major approach for glycan analysis. However, the preferential cleavage of the sialic acid moiety by in- and post-source decay influences the determination of sialylated glycans by MALDI-MS. Many chemical derivatization methods were introduced to stabilize the sialylated glycan during MALDI-MS. Among current derivatization methods, methylamidation is a promising means for simultaneous analysis of natural sialylated glycans regardless of their sialic acid linkage types. Here, a novel derivatization method was developed, in which proteins were conjugated on the solid-phase support in order to stabilize the sialic acids by methylamidation and to reduce sample loss and contamination during the derivatization process. This derivatization strategy was used to investigate N-glycans from fetuin, a glycoprotein containing different types of complex N-glycans. The developed method was also applied to the N-glycan profiling of human serum from patients and healthy volunteers. Results were consistent with N-glycan profiling by HPLC-fluorescence detection. This new method provided a sensitive, simple, and robust approach for profiling glycan structures of complex samples.  相似文献   

8.
Reversed-phase liquid chromatography on the nanoscale coupled to electrospray tandem mass spectrometry was used to analyse a mixture of four commercial glycan standards, and the method was further adapted to N-glycans enzymatically released from alpha-1-acid glycoprotein and immunoglobulin gamma. Glycans were permethylated to enable their separation by reversed-phase chromatography and to facilitate interpretation of fragmentation data. Prior to derivatization of glycans by permethylation, they were reduced to cancel anomerism because, although feasible, it was not desired to separate α- and β-anomers. The effect of supplementing chromatographic solvent with sodium hydroxide to guide adduct formation was investigated. Raising the temperature in which the separation was performed improved chromatographic resolution and affected retention times as expected. It was shown by using the tetrasaccharides sialyl Lewis X and sialyl Lewis A that reversed-phase chromatography could achieve the separation of methylated isobaric glycan analytes. Isobaric glycans were detected among the N-glycans of immunoglobulin gamma and further analysed by tandem mass spectrometry.  相似文献   

9.
A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced.  相似文献   

10.
Woodchucks have been a preferred lab animal model of chronic hepatitis B viral infection. The model recapitulates the disease progression of HBV infection to hepatocellular carcinoma (HCC) and has documented similarities in protein glycosylation with human HCC. This study examined N‐glycans in serum of animals with(out) HCC. Oligosaccharides were released enzymatically using PNGaseF from total serum or from serum partially fractionated by extraction. Two different extraction procedures – reversed‐phase high‐performance liquid chromatography (RP‐HPLC) and solid‐phase extraction (SPE) on a cation‐exchange/reversed‐phase STRATA‐XC cartridge – were used with the purpose of confirming glycosylation profiles. Oligosaccharides were analyzed by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) after derivatization with phenylhydrazine and/or permethylation. Characteristic fragment ions produced under MS/MS conditions allowed discrimination between isomeric structures of oligosaccharides, including those sialylated with two types of acidic residues. The complementary methods allowed structural characterization of oligosaccharides from various N‐glycan classes. Furthermore, to validate results, glycosylation profiles of woodchuck sera were compared to glycans obtained from mouse serum on the same conditions. In summary, we have identified 40 N‐glycan structures in the serum of woodchucks and some types of oligosaccharide structures appeared to increase in HCC samples following protease digest. The study provides improved tools for the characterization of N‐glycans from total serum in the progression of liver disease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Negative ion tandem mass spectrometry (MS/MS) spectra of three isomeric triantennary N-linked glycans provided clear differentiation between the isomers and confirmed the occurrence of an isomer that was substituted with galactose on a bisecting GlcNAc (1 --> 4-substituted on the core mannose) residue recently reported by Takegawa et al. from N-glycans released from human immunoglobulin G (IgG). We extend this analysis of human serum IgG to reveal an analogue of the fucosylated triantennary glycan reported by Takegawa et al. together with a third compound that lacked both the sialic acid and the fucose residues. In addition, we demonstrate the biosynthesis of bisected hybrid-type glycans with the galactose modification, with and without core fucose, on the stem cell marker glycoprotein, 19A, expressed in a partially ricin-resistant human embryonic kidney cell line. It would appear, therefore, that this modification of N-linked glycans containing a galactosylated bisecting GlcNAc residue may be more common than originally thought. Negative ion MS/MS analysis of glycans is likely to prove an invaluable tool in the analysis and monitoring of therapeutic glycoproteins.  相似文献   

12.
Glycosylation of recombinant human erythropoietin (rHuEPO) is a post-translational process that alters biological activity, solubility and lifetime of the glycoprotein in blood, and strongly depends on the type of cell and the cell culture conditions. A fast and simple method providing extensive carbohydrate information about the glycans present in rHuEPO and other glycoproteins is needed in order to improve current methods in drug development or product quality control. Here, an improved method for intact rHuEPO glycoform characterization by CZE-ESI-TOF MS has been developed using a novel capillary coating and compared to a previous study. Both methods allow a fast separation in combination with accurate mass characterization of the single protein isoforms. The novel dynamic coating provides a separation at an EOF close to zero, enabling better separation. This results in an improved mass spectrometric resolution and the detection of minor isoforms. In order to assign an unequivocal carbohydrate composition to every intact glycoform, a CZE-ESI-MS separation method for enzymatically released underivatized N-glycans has been developed. The TOF MS allows the correct identification of the glycans due to its high mass accuracy and resolution. Therefore, glycan modifications such as acetylation, oxidation, sulfation and even the exchange of OH by NH(2) are successfully characterized. Information of the protein-backbone molecular mass has been combined with results from peptide analysis (revealing information about O-glycosylation) and from the glycan analysis, including the detection of as yet undescribed glycans containing four antennae and five sialic acids. This allows an unequivocal assignment of an overall glycosylation composition to the molecular masses obtained for the intact rHuEPO glycoforms.  相似文献   

13.
The structure of glycans from glycoproteins is highly relevant for their function. We tightly integrate liquid chromatography–mass spectrometry (LC-MS), MS/MS, and nuclear magnetic resonance (NMR) data to achieve a complete characterization of even isobaric glycans differing in only one linkage position or in the substitution in one branch. As example, we analyzed ten desialylated underivatized glycans from bovine fibrinogen. The molecules were separated on a PGC column, and LC-MS data allowed an assignment of the compositions of the glycans. MS/MS data of the same glycans allowed elucidation of sequence and to some extent of branching and linkage. All MS/MS fragmentation methods led to multiple dissociations, resulting in several cases in ambiguous data. The MS/MS data were interpreted both by scientists and automatically by software, and the differential results are compared. Additional data from a tight integration of LC-MS and NMR data resulted in a complete structural characterization of the glycans. The acquisition of simple 1D 1H NMR data led—in combination with LC-MS and MS/MS data—to an unambiguous assignment of the isobaric glycans. Compounds that were not separated in the chromatography could easily be assigned structurally by applying the 3D cross-correlation (3DCC) technology to arrive at NMR spectra of the pure components—without actually separating them. By applying LC-MS, MS/MS, 1D 1H NMR, and 3DCC together, one can assign glycan structures from glycoconjugates with high confidence affording only 200 pmol of glycan material.  相似文献   

14.
CE is a high‐resolution separation technique broadly used in the biotechnology industry for carbohydrate analysis. The standard sample preparation protocol for CE analysis of glycans released from glycoproteins generally requires derivatization times of overnight at 37°C, using ≥100 fold excess of fluorophore reagent, 8‐aminopyrene‐1,3,6‐trisulfonic‐acid, if the sample is unknown, or it is a regulated biotherapeutic product, possibly containing terminal sialic acid(s). In this paper, we report on significant improvements for the standard CE sample preparation method of glycan analysis. By replacing the conventionally used acetic acid catalyst with citric acid, as low as 1:10 glycan to fluorophore molar ratio (versus the typical 1:≥100 ratio) maintained the >95% derivatization yield at 55°C with only 50 min reaction time. Terminal sialic acid loss was negligible at 55°C during the derivatization process, and indicating that the kinetics of labeling at 55°C was faster than the loss of sialic acid from the glycan. The reduced relative level of 8‐aminopyrene‐1,3,6‐trisulfonic‐acid simplified the removal of excess reagent, important in both CE‐LIF (electrokinetic injection bias) and CE‐MS (ion suppression). Coupling CE‐ ESI‐MS confirmed that the individual peaks separated by CE corresponded to single glycans and increased the confidence of structural assignment based on glucose unit values.  相似文献   

15.
Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed.  相似文献   

16.
Structures of N-glycans released from rat CEACAM1 expressed in human embryonic kidney cells were determined by MALDI and negative ion nanospray MS/MS techniques. The major carbohydrates were bi-, tri- and tetra-antennary complex glycans with and without sialic acid, fucose and bisecting GlcNAc residues. High-mannose glycans, predominantly Man(5)GlcNAc(2), were also found. The negative ion fragmentation technique easily identified the branching pattern of the triantennary glycans (mainly branched on the 6-antenna) and the presence of 'bisecting' GlcNAc residues (attached to the 4-position of the core mannose), features that are difficult to determine by traditional techniques. Sialic acids were in both alpha2-3 and alpha2-6 linkage as determined by MALDI-TOF MS following linkage-specific derivatization.  相似文献   

17.
This study presented an approach to prepare monodisperse immobilized Ti4+ affinity chromatography (Ti4+-IMAC) microspheres for specific enrichment of phosphopeptides in phosphoproteome analysis. Monodisperse polystyrene seed microspheres with a diameter of ca. 4.8 μm were first prepared by a dispersion polymerization method. Monodisperse microspheres with a diameter of ca. 13 μm were prepared using the seed microspheres by a single-step swelling and polymerization method. Ti4+ ion was immobilized after chemical modification of the microspheres with phosphonate groups. The specificity of the Ti4+-IMAC microspheres to phosphopeptides was demonstrated by selective enrichment of phosphopeptides from mixture of tryptic digests of α-casein and bovine serum albumin (BSA) at molar ratio of 1 to 500 by MALDI-TOF MS analysis. The sensitivity of detection for phosphopeptides determined by MALDI-TOF MS was as low as 5 fmol for standard tryptic digest of β-casein. The Ti4+-IMAC microspheres were compared with commercial Fe3+-IMAC adsorbent and homemade Zr4+-IMAC microspheres for enrichment of phosphopeptides. The phosphopeptides and non-phosphopeptides identified by Fe3+-IMAC, Zr4+-IMAC and Ti4+-IMAC methods were 26, 114, 127 and 181, 11, 11 respectively for the same tryptic digest samples. The results indicated that the Ti4+-IMAC had the best performance for enrichment of phosphopeptides.  相似文献   

18.
A rapid method for analysis of glycans of glycoproteins is presented. This method comprised deglycosylation, sample cleanup and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of glycans. The enzymatic deglycosylation of N-linked glycoproteins was enhanced in terms of speed and reproducibility using an enzyme-friendly surfactant. The released glycans were desalted using a micro-scale solid phase extraction (SPE) device packed with a hydrophilic interaction chromatography (HILIC) sorbent. Hydrophilic glycans were well retained by SPE, while salts and surfactants were removed from the sample. The glycans were eluted using 25-50 microL of solvent and analyzed directly without derivatization using MALDI-MS. MALDI quadrupole time-of-flight (Q-Tof) instrumentation was utilized for glycan profiling and structure characterization by tandem mass spectrometry (MS/MS). The presented method allows sensitive analysis of glycans benefiting from optimized deglycosylation reactions and efficient sample cleanup.  相似文献   

19.
Glycosylated proteins modulate various important functions of organisms. To reveal the functions of glycoproteins, in‐depth characterization studies are necessary. Although mass spectrometry is a very efficient tool for glycoproteomic and glycomic studies, efficient sample preparation methods are required prior to analyses. In the study, poly(amidoamine) dendrimer‐coated magnetic nanoparticles were presented for the specific enrichment and fast purification of glycopeptides and glycans. The enrichment and purification performance of the developed method was evaluated both at the glycopeptide, and the glycan level using several standard glycoprotein digests and released glycan samples. The poly(amidoamine) dendrimer‐coated magnetic nanoparticles not only showed selective affinity (Immunoglobulin G/Bovine Serum Albumin, 1/10 by weight) to glycopeptides and released glycans but also good sensitivity (0.4 ng/µL for Immunoglobulin G) for glycoproteomic and glycomic applications. Thirty‐five glycopeptides of Immunoglobulin G were detected after enrichment with poly(amidoamine) dendrimer‐coated magnetic nanoparticles. In addition, 55 18O tagged deamidated glycopeptides belonging to human plasma glycoproteome were confirmed. Finally, fifty 2‐aminobenzoic acid, and 30 procainamide‐labelled human plasma N‐glycans released from human plasma glycoproteins were determined after purifications. The results indicate that the proposed enrichment and purification method using poly(amidoamine) dendrimer‐coated magnetic nanoparticles could be simply adjusted to sample preparation methods.  相似文献   

20.
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号