首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein glycosylation analysis is important for elucidating protein function and molecular mechanisms in various biological processes. We previously developed a glycan analysis method using a 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix (3-AQ/CHCA LM) and applied it to the quantitative glycan profiling of glycoproteins. However, information concerning glycosylation sites is lost; glycopeptide analysis is therefore required to identify the glycosylation sites in glycoproteins. Human epidermal growth factor receptor 2 (HER2) is a glycoprotein that plays a role in the regulation of cell proliferation, differentiation, and migration. Several reports have described the structure of HER2, but the structures of N-glycans attached to this protein remain to be fully elucidated. In this study, 3-AQ/CHCA LM was applied to tryptic digests of HER2 to reveal its N-glycosylation state and to evaluate the utility of this LM in characterizing glycopeptides. Peptide sequence coverage was considerably improved compared to analysis of HER2 using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid. Most of the peaks observed using only this LM were localized at the inner or outer regions of sample spots. Furthermore, five of the peptide peaks that were enriched within the inner region were confirmed to be glycosylated by MS/MS analysis. Three glycosylation sites were identified and their glycan structures were elucidated. The reduction in sample complexity by on-target separation allowed for higher sequence coverage, resulting in effective detection and characterization of glycopeptides. In conclusion, these results demonstrate that MS-based glycoprotein analysis using 3-AQ/CHCA is an effective method to identify glycosylation sites in proteins and to elucidate the glycan structures of glycoproteins in complex samples.  相似文献   

2.
Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.
Figure
?  相似文献   

3.
Aberrant glycosylation of proteins and lipids has been implicated in many human diseases, thus prompting the need for reliable analytical methods that permit dependable quantification of glycans originating from biological specimens. MS of permethylated glycans is currently employed to monitor disease-related aberrant glycosylation of proteins and lipids. However, enhancing the sensitivity of this type of analysis is still needed. Here, analysis of permethylated glycans at enhanced sensitivity is attained through miniaturized solid-phase permethylation and online solid-phase purification. Solid-phase permethylation method was miniaturized by reducing the amount of sodium hydroxide beads (one-third the original amount) packed in microspin columns. The efficiency of glycan permethylation was not adversely affected by this reduction. Online solid-phase purification of permethylated N-glycans derived from model glycoproteins, such as fetuin, α-1 acid glycoprotein and ribonuclease B, offered more sensitive and reproducible results than offline liquid-liquid and solid-phase extractions. Online solid-phase purification method described here permitted a 75% increase in signal intensities of permethylated glycans relative to offline purification methods. This is mainly due to the minimized sample handling associated with an online cleaning procedure. The efficiency and utility of online solid-phase purification was also demonstrated here for N-glycans derived from human blood serum. Online solid-phase purification permitted the detection of 73 N-glycan structures, while only 63 glycan structures were detected in the case of samples purified through liquid-liquid extraction. The intensities of the 63 structures that were detected in both cases were 75% higher for samples that were purified through the online method.  相似文献   

4.
The fine structures of Fc N-glycans can modulate the effector functions of IgG antibodies. It has been demonstrated that lack of the core fucose on the Fc N-glycans leads to drastic enhancement of antibody-dependent cellular cytotoxicity (ADCC), while terminal α2,6-sialylation of Fc glycan plays a critical role for the anti-inflammatory activity of human intravenous immunoglobulin (IVIG). We describe in this paper a highly efficient chemoenzymatic method for site-selective Fc glycoengineering of intact monoclonal antibody and IVIG. Two new glycosynthase mutants (EndoS-D233A and D233Q) were generated by site-directed mutagenesis of EndoS (an endoglycosidase from Streptococcus pyogenes ) and were found to be capable of efficiently transferring predefined N-glycans from corresponding glycan oxazolines to the Fc-deglycosylated intact IgGs without product hydrolysis. As a model study, rituximab (a therapeutic monoclonal antibody) was successfully transformed from mixtures of G0F, G1F, and G2F glycoforms to well-defined homogeneous glycoforms, including a fully sialylated (S2G2F) glycoform that may gain anti-inflammatory activity, a nonfucosylated G2 glycoform that showed significantly enhanced FcγIIIa receptor-binding activity, and an azido-tagged glycoform that can be further transformed into other glycoforms. We also found that EndoS could selectively remove the Fc N-glycans in the presence of FAB glycosylation. This finding, coupled with the remarkable transglycosylation activity of the EndoS glycosynthase mutants, permitted a highly selective glycoengineering of the IVIG's Fc glycans into a fully sialylated Fc glycoform, which may possess significantly enhanced anti-inflammatory activity. The glycoengineering approach described here provides a general platform to modulate the effector functions of IgG antibodies, enabling the optimization of therapeutic efficacy and gain of new functions of monoclonal antibodies and IVIG.  相似文献   

5.
Hydrophilic-interaction liquid chromatography (HILIC), reversed-phase chromatography (RPC) and porous graphitic carbon (PGC) chromatography are typically applied for liquid chromatographic separations of protein N-glycans. Hence the performances of these chromatography modes for the separation of fluorescently labeled standard glycan samples (monoclonal antibody, fetuin, ribonuclease-B) covering high-mannose and a broad range of complex type glycans were investigated. In RPC the retention of sialylated glycans was enhanced by adding an ion-pairing agent to the mobile phase, resulting in improved peak shapes for sialylated glycans compared to methods recently reported in literature. For ion pairing RPC (IP-RPC) and HILIC ultra-high performance stationary phases were utilized to maximize the peak capacity and thus the resolution. But due to the shallow gradient in RPC the peak capacity was lower than on PGC. Retention times in HILIC and IP-RPC could be correlated to the monosaccharide compositions of the glycans by multiple linear regression, whereas no adequate model was obtained for PGC chromatography, indicating the significance of the three-dimensional structure of the analytes for retention in this method. Generally low correlations were observed between the chromatography methods, indicating their orthogonality. The high selectivities, as well as the commercial availability of ultra-high performance stationary phases render HILIC the chromatography method of choice for the analysis of glycans. Even though for complete characterization of complex glycan samples a combination of chromatography methods may be necessary.  相似文献   

6.
N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti4+-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti4+-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified.  相似文献   

7.
程倩  贾戴辉  张博慧  许俊彦  邵喆  黄应峰  邹洵 《色谱》2022,40(2):175-181
西妥昔单抗具有较复杂的糖基化修饰,在抗原结合片段(Fab)和可结晶片段(Fc)的重链上都含有2个N-糖基化位点,其中Fab段的糖基化最为复杂,要研究清楚该位点的糖基化修饰,开发专一性切糖技术和稳定的聚糖比例分析方法是当前迫切需要解决的难题。以中国仓鼠卵巢(CHO)细胞表达的西妥昔单抗为研究对象,使用β-N-乙酰氨基葡萄糖苷酶(Endo F2)开发了一种快速Fab段聚糖释放的方法,利用超高效液相色谱-高分辨质谱(UPLC-HRMS)进行了定性和聚糖比例分析。第一步对抗体原液进行非变性酶切,抗体原液经超纯水稀释后,加入糖苷酶Endo F2进行酶切,通过质谱对质量数的解析,结果表明Endo F2酶切时间5 min, Fab段的聚糖就能完全切除,而Fc段的聚糖不受影响,实现了快速酶切,而且切糖具有很好的专一性。第二步对Fab段聚糖进行比例分析,将释放的聚糖经对氨基苯甲酰胺(2-AB)荧光标记后使用超高效液相色谱联用荧光检测器(FLR)进行检测,在亲水作用色谱(HILIC)柱上得到良好的分离并可以进行稳定地聚糖比例分析。3次独立试验结果表明,酶切后的质谱图基本一致,且聚糖的比例结果也基本一致,表明Endo F2酶切方法和聚糖比例分析方法都具有较好的稳定性和可靠性。此外,通过测定来自两个不同工艺生产的样品,数据显示两者的糖谱上具有非常明显的差异,表明利用开发的方法可以实现对抗体生产工艺进行监测研究,对抗体生产工艺的评估具有非常重要的意义。  相似文献   

8.
Monoclonal antibodies are typically glycosylated at asparagine residues in the Fc domain, and glycosylation heterogeneity at the Fc sites is well known. This paper presents a method for rapid analysis of glycosylation profile of the therapeutic monoclonal antibody trastuzumab from different production batches using electrospray quadrupole ion-mobility time-of-flight mass spectrometry (ESI-Q-IM-TOF). The global glycosylation profile for each production batch was obtained by a fast LC-MS analysis, and comparisons of the glycoprofiles of trastuzumab from different lots were made based on the deconvoluted intact mass spectra. Furthermore, the heterogeneity at each glycosylation site was characterized at the reduced antibody level and at the isolated glycopeptide level. The glycosylation site and glycan structures were confirmed by performing a time-aligned-parallel fragmentation approach using the unique dual-collision cell design of the instrument and the incorporated ion-mobility separation function. Four different production batches of trastuzumab were analyzed and compared in terms of global glycosylation profiles as well as the heterogeneity at each glycosylation site. The results show that each batch of trastuzumab shares the same types of glycoforms but relative abundance of each glycoforms is varied.  相似文献   

9.
Primack J  Flynn GC  Pan H 《Electrophoresis》2011,32(10):1129-1132
A high-throughput screening assay was developed to quantify major glycan species in the crude mammalian cell culture samples for monoclonal antibodies (mAbs). This method utilizes high-speed microchip electrophoresis separation following a fast sample preparation procedure. Using a 96-well ultra-filtration membrane, interfering species in the cell culture media were efficiently removed as the samples were concentrated. A commercial microchip electrophoresis instrument was used for high-speed separation, allowing each sample to be analyzed in less than 1 min. This method is well suited for the purpose of high-throughput antibody glycan profiling during cell culture expression, including clone selection and cell culture process optimization. The relative levels of high mannose (HM), fucosylated and galactosylated glycan species in the Fc domain can be determined for hundreds of crude cell culture samples in a few hours.  相似文献   

10.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been a major approach for glycan analysis. However, the preferential cleavage of the sialic acid moiety by in- and post-source decay influences the determination of sialylated glycans by MALDI-MS. Many chemical derivatization methods were introduced to stabilize the sialylated glycan during MALDI-MS. Among current derivatization methods, methylamidation is a promising means for simultaneous analysis of natural sialylated glycans regardless of their sialic acid linkage types. Here, a novel derivatization method was developed, in which proteins were conjugated on the solid-phase support in order to stabilize the sialic acids by methylamidation and to reduce sample loss and contamination during the derivatization process. This derivatization strategy was used to investigate N-glycans from fetuin, a glycoprotein containing different types of complex N-glycans. The developed method was also applied to the N-glycan profiling of human serum from patients and healthy volunteers. Results were consistent with N-glycan profiling by HPLC-fluorescence detection. This new method provided a sensitive, simple, and robust approach for profiling glycan structures of complex samples.  相似文献   

11.
Glycan recognition leading to cell-cell interactions, signaling, and immune responses is mediated by various glycan-binding proteins (GBPs) showing highly diverse ligand specificities. We describe here a rapid glycan immobilization technique via 4-hydrazinobenzoic acid (HBA)-functionalized beads and its application to high-throughput screening of miniature pig kidney N-glycan-binding proteins by using a mass-spectrometric approach. Without any derivatization steps, the purified pig kidney N-glycans were directly immobilized on to HBA-functionalized beads and subsequently used to identify GBPs from human serum. This screening method showed remarkable performance for identifying potential GBPs closely involved in pig-to-human xenograft rejection mediated by human serum, including antibodies, cytokines, complement components, siglec, and CD antigens. Thus, these results demonstrate that the GBP screening method was firmly established by one-step immobilization of the N-glycans on to microsphere and highly sensitive mass-spectrometric analysis.  相似文献   

12.
N-linked oligosaccharide standards obtained from commercial sources were derivatized with phenylhydrazine (PHN) and analyzed by on-line reversed-phase high performance liquid chromatography (HPLC)/electrospray ionization mass spectrometry (ESI-MS). This procedure was then applied to mixtures of N-glycans enzymatically released from hen ovalbumin. Under ESI-MS conditions, phenylhydrazones of asialylated oligosaccharide standards and ovalbumin glycans produced mainly [M + 2H]2+ molecular ions at low cone voltage values, while minimal fragmentation was observed. Reversed-phase HPLC/ESI-MS total and selected ion chromatograms obtained for derivatized N-glycans from ovalbumin showed partial but useful separation. Overall glycan profiles obtained by ESI-MS were compared with results obtained by matrix-assisted laser desorption/ionization (MALDI)-MS. Qualitatively, profiles were similar from one technique to the other in terms of relative abundance of glycans versus composition. Post-source decay (PSD) analysis of the [M + Na]+ ions of PHN-glycans showed dominant B, C and internal B/Y, C/Y cleavages. These patterns were helpful in relating fragmentation to proposed structures. Cross-ring cleavage fragment ions (A-type) were also observed in most cases. The PHN derivatization method is fast and simple. It produces abundant parent ions in both MALDI-MS and ESI-MS, while avoiding the presence of salt contaminants during the labeling procedure.  相似文献   

13.
Hu Y  Mechref Y 《Electrophoresis》2012,33(12):1768-1777
The glycomic profiling of purified glycoproteins and biological specimen is routinely achieved through different analytical methods, but mainly through MS and LC-MS. The enhanced ionization efficiency and improved tandem MS interpretation of permethylated glycans have prompted the popularity of this approach. This study focuses on comparing the glycomic profiling of permethylated N-glycans derived from model glycoproteins and human blood serum using MALDI-MS as well as RP-LC-MALDI-MS and RP-LC-ESI-MS. In the case of model glycoproteins, the glycomic profiles acquired using the three methods were very comparable. However, this was not completely true in the case of glycans derived from blood serum. RP-LC-ESI-MS analysis of reduced and permethylated N-glycans derived from 250 nl of blood serum allowed the confident detection of 73 glycans (the structures of which were confirmed by mass accuracy and tandem MS), while 53 and 43 structures were identified in the case of RP-LC-MALDI-MS and MALDI-MS analyses of the same sample, respectively. RP-LC-ESI-MS analysis facilitates automated and sensitive tandem MS acquisitions. The glycan structures that were detected only in the RP-LC-ESI-MS analysis were glycans existing at low abundances. This is suggesting the higher detection sensitivity of RP-LC-ESI-MS analysis, originating from both reduced competitive ionization and saturation of detectors, facilitated by the chromatographic separation. The latter also permitted the separation of several structural isomers; however, isomeric separations pertaining to linkages were not detected.  相似文献   

14.
A rapid method for analysis of glycans of glycoproteins is presented. This method comprised deglycosylation, sample cleanup and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of glycans. The enzymatic deglycosylation of N-linked glycoproteins was enhanced in terms of speed and reproducibility using an enzyme-friendly surfactant. The released glycans were desalted using a micro-scale solid phase extraction (SPE) device packed with a hydrophilic interaction chromatography (HILIC) sorbent. Hydrophilic glycans were well retained by SPE, while salts and surfactants were removed from the sample. The glycans were eluted using 25-50 microL of solvent and analyzed directly without derivatization using MALDI-MS. MALDI quadrupole time-of-flight (Q-Tof) instrumentation was utilized for glycan profiling and structure characterization by tandem mass spectrometry (MS/MS). The presented method allows sensitive analysis of glycans benefiting from optimized deglycosylation reactions and efficient sample cleanup.  相似文献   

15.
We explored matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometry for the analysis of N-glycosylated peptides, using horseradish peroxidase (HRP) as a test case. Two different types of cleavage were observed in the TOF/TOF fragmentation spectra: Firstly, cleavages of peptide bonds yielded fragments with the attached N-glycans staying intact, thus revealing information on peptide sequence and glycan attachment site. Secondly, fragmentation of the glycan moiety was characterized by cleavage of glycosidic bonds as well as a (0,2)X-ring fragmentation of the innermost N-acetylglucosamine of the chitobiose core. Loss of the complete N-glycan moiety occurred by cleavage of both the N-glycosidic bond and the side-chain amide group of the N-glycosylated asparagine, yielding a characteristic peak doublet with a mass difference of 17 Da, which revealed the individual masses of the N-glycan and the peptide moiety. Analysis of a HRP tryptic digest at the sub-picomole level allowed the characterization of various N-glycosylated peptides including those with internal disulfide linkages, a glycopeptide linked via a disulfide bond to another peptide, and a 5 kDa glycopeptide carrying two N-glycans. The potential of our approach was illustrated by the detection of the following novel features of HRP glycosylation: (i) The conjugation of a xylosylated trimannosyl N-glycan without core-fucosylation to site Asn316, showing for the first time unambiguously the occupation of this site; and (ii) A disaccharide N-acetylhexosamine1deoxyhexose1 attached to N-glycosylation sites Asn285 and Asn298, which might represent a Fuc(alpha1-3)GlcNAc- moiety arising from the processing of N-glycans by a horse-radish endoglycosidase during biosynthesis of HRP.  相似文献   

16.
Protein glycosylation represents one of the major post-translational modifications and can have significant effects on protein function. Moreover, changes in the carbohydrate structure are increasingly being recognized as an important modification associated with cancer etiology. In this report, we describe the development of a proteomics approach to identify breast cancer related changes in either concentration and/or the carbohydrate structures of glycoprotein(s) present in blood samples. Diseased and healthy serum samples were processed by an optimized sample preparation protocol using multiple lectin affinity chromatography (M-LAC) that partitions serum proteins based on glycan characteristics. Subsequently, three separate procedures, 1D SDS-PAGE, isoelectric focusing and an antibody microarray, were applied to identify potential candidate markers for future study. The combination of these three platforms is illustrated in this report with the analysis of control and cancer glycoproteomic fractions. Firstly, a molecular weight based separation of glycoproteins by 1D SDS-PAGE was performed, followed by protein, glycoprotein staining, lectin blotting and LC–MS analysis. To refine or confirm the list of interesting glycoproteins, isoelectric focusing (targeting sialic acid changes) and an antibody microarray (used to detect neutral glycan shifts) were selected as the orthogonal methods. As a result, several glycoproteins including alpha-1B-glycoprotein, complement C3, alpha-1-antitrypsin and transferrin were identified as potential candidates for further study.  相似文献   

17.
We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.  相似文献   

18.
Reversed-phase liquid chromatography on the nanoscale coupled to electrospray tandem mass spectrometry was used to analyse a mixture of four commercial glycan standards, and the method was further adapted to N-glycans enzymatically released from alpha-1-acid glycoprotein and immunoglobulin gamma. Glycans were permethylated to enable their separation by reversed-phase chromatography and to facilitate interpretation of fragmentation data. Prior to derivatization of glycans by permethylation, they were reduced to cancel anomerism because, although feasible, it was not desired to separate α- and β-anomers. The effect of supplementing chromatographic solvent with sodium hydroxide to guide adduct formation was investigated. Raising the temperature in which the separation was performed improved chromatographic resolution and affected retention times as expected. It was shown by using the tetrasaccharides sialyl Lewis X and sialyl Lewis A that reversed-phase chromatography could achieve the separation of methylated isobaric glycan analytes. Isobaric glycans were detected among the N-glycans of immunoglobulin gamma and further analysed by tandem mass spectrometry.  相似文献   

19.
Antibody dynamics on membranes, such as endocytosis and clustering, are vital in determining antibody functions. In this study, we demonstrated that glycan conjugation can modulate antibody dynamics through the glycan–lectin interaction to regulate its potency. The anti-HER2 antibody, an anti-breast-cancer antibody, was conjugated with galactose-containing N-glycan, and its internalization was suppressed by interaction with galectin-3, leading to enhanced complement-dependent cytotoxic (CDC) activity. This glycan–antibody conjugate is proposed as a new approach to modulate antibody activity and may provide an alternative strategy for redeveloping antibody drugs that do not exhibit sufficient activity.  相似文献   

20.
Asparagine-linked oligosaccharides (N-glycans) usually show structural heterogeneity, especially in proteins with sialylated N-glycans and, therefore, their structural analysis is still very difficult. A zwitterionic type of hydrophilic interaction chromatography column with sulfobetaine functional groups (called a ZIC-HILIC column) was applied to the separation of tryptic peptides of alpha-1-acid glycoprotein. It was demonstrated that the ZIC-HILIC separation column has a selectivity for sialylated N-glycopeptides and a high capability for separation based on the structural recognition of sialylated N-glycan isomers as well as for the previously reported neutral N-glycans and N-glycopeptides. The retention characteristics of neutral and sialylated N-glycans derivatized with 2-aminopyridine (PA N-glycans) demonstrate that the retentions of the N-glycans are based primarily on hydrophilic interaction with the water-rich liquid layer generated on the surface of the ZIC-HILIC column. In addition, the electrostatic repulsion interaction shielded with counter ions effectively tunes the separation and recognition of sialylated N-glycan isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号