首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Absence of gradients and Nernstian equilibrium stripping (AGNES) is a recently developed electroanalytical technique specifically designed for the direct determination of free concentrations of metal ions. AGNES is applied here to the determination of free Zn concentration in a river water sample. The method has been validated with synthetic solutions of low ionic strengths containing Zn and 2,6-pyridinedicarboxylic acid and then applied to synthetic river waters and to a natural sample collected from Besòs River in Montcada i Reixac (Catalonia, North-Eastern Spain). In the river sample, an average free Zn concentration of 12.8(4) nM was obtained, while the total dissolved Zn concentration was 0.51(8)?μM. To control and maintain pH and pCO2 constant during AGNES measurements, a novel device for N2/CO2 mixed purging has been developed.  相似文献   

2.
The electroanalytical technique Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been extended by applying stripping chronopotentiometry (SCP) as the re-oxidation stage in the determination of the free concentration of Zn(2+), Cd(2+) and Pb(2+). This new approach, called AGNES-SCP, has been implemented with screen-printed electrodes (SPE) and the standard Hanging Mercury Drop Electrode (HMDE). Clear advantages of this variant have been shown: (i) the easy resolution of the peaks of different metals present in mixtures and (ii) the sparing of blanks. A rigorous computation of the faradaic charge along the SCP stage takes into account the contribution of other oxidants, which can be efficiently measured at the end of the deposition stage of AGNES. The free Cd concentration determined in an oxalate solution at pH 6 with an HMDE as the working electrode agreed well with values obtained with a Cd Ion Selective Electrode. The free metal concentration measured using an SPE for the system Cd and nitrilotriacetic acid (NTA) at pH = 4.8 also conformed well with Visual MINTEQ results.  相似文献   

3.
In the present work, the applicability of thin mercury film on a rotating disk electrode (TMF-RDE), to assess the free metal ion concentration by the absence of gradients and Nernstian equilibrium stripping (AGNES), is evaluated. The thickness of the mercury film and several AGNES parameters has been optimized. A nominal 16 nm film is chosen due to the higher signal (faradaic current) relative to the value of the noise (capacitive current). Due to the smaller volume to area ratio, the deposition time needed to reach a certain preconcentration factor (Y) is much shorter than in larger electrodes, like the HMDE. The limit of detection (3σ) for lead(II) is 7.4 × 10−9 M and 7.2 × 10−8 M for a Y of 5000 (deposition time of 150 s) and 1000 (deposition time of 100 s), respectively. A specific mathematical treatment is developed in order to subtract a corrected blank taking into account the degradation of the thin film (presumably, falling down of drops). The couple TMF-RDE/AGNES is successfully applied for speciation purposes in the systems Pb(II)-latex nanospheres and Pb(II)-IDA (iminodiacetic acid), where the stability constants calculated for both systems agree with values reported in the literature.  相似文献   

4.
Zinc (Zn) has been classified as a “Specific Pollutant” under Annex VIII of the EU Water Framework Directive by two thirds of the EU member states. As a result, the UK Environmental Quality Standard (EQS) for Transitional and Coastal (TrAC) Waters has been reduced from 612 nM to 121 nM total dissolved Zn. It is widely accepted that the free metal ion ([Zn2+]) is the most bioavailable fraction, but there are few techniques available to determine its concentration in these waters. In this work, Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been applied, for the first time, to determine [Zn2+] in estuarine waters. The AGNES method had a mean RSD of ±18%, a (deposition time dependent) limit of detection of 0.73 nM and a [Zn2+] recovery of 112 ± 19% from a certified reference material (BCR-505; Estuarine Water). AGNES results for 13 estuarine samples (salinity 0.1–31.9) compared well (P = 0.02) with Competitive Ligand Exchange Cathodic Stripping Voltammetry (CLE-AdCSV) except for one sample. AGNES requires minimal sample manipulation, is unaffected by adsorption of interfering species at the electrode surface and allows direct determination of free zinc ion concentrations. Therefore AGNES results can be used in conjunction with ecotoxicological studies and speciation modelling to set and test compliance with water quality standards.  相似文献   

5.
One problem associated with using bare solid metal electrodes, such as gold and platinum, in stripping analysis to determine heavy metal ions such as lead and copper ions in dilute solutions is that underpotential deposition (UPD) gives multiple stripping peaks in the analysis of mixtures. These peaks are often overlapped and cannot be conveniently used for analytical purposes. Bifunctional alkylthiols, such as 3-mercaptopropionic acid, with an ionizable group on the other terminal end of the thiol can form self-assembled monolayers (SAMs) on the surface of the gold electrode. It is shown that such an SAM-modified gold electrode minimizes the UPD effects for the stripping analysis of lead and copper. The anodic peak potential shifts and the peak shape changes, indicating that the SAM changes the deposition and stripping steps of these heavy metal ions. Thus, the sensitivity levels for both single species and mixtures can be significantly improved for the conventional solid electrodes. The mechanism of the deposition reaction at the SAM-modified gold electrodes is discussed. Received: 29 May 1997 / Accepted: 24 June 1997  相似文献   

6.
The potentiometric response of a carbon paste electrode modified with silica sol-gel and mercaptosuccinic acid (MSA) in the presence and absence of gold nano-particles was studied. The results showed that the electrode with gold nano-particles was responded to Al(3+) ions as a hard metal ion. On the other hand, the electrode without gold nano-particles was responded to copper ions as a soft metal ion. The electrodes without and with gold nano-particles exhibits a Nernstian slope of 29.1 and 19.2 mV decade(-1) for copper and aluminum ions over a wide concentration range of 4.3×10(-7)-1.0×10(-2) and 4.5×10(-7)-1.6×10(-3) mol L(-1), respectively. The detection limits of electrodes were 4.0×10(-7) and 1.6×10(-7) mol L(-1) for copper and aluminum ions, respectively.  相似文献   

7.
AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) has been implemented with screen‐printed electrodes (SPE) for the determination of the free concentration of Zn2+, Cd2+ and Pb2+. For SPE, the stripped charge is a suitable response function which does not require the second stage of AGNES to be under diffusion limited conditions. This property can be used in the avoiding of the interference of Pb on [Cd2+] determination. The proportionality factor between stripped charge and concentration of amalgamated metal depends on the volume of mercury and opens the way to a future calibrationless strategy. Zn and Cd complexation with oxalate at various pH‐values confirms the suitability of the developed methodology, which compares favourable with the standard one based on the Hanging Mercury Drop Electrode.  相似文献   

8.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

9.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

10.
The application of amalgam electrodes for measuring the degree of complexation of metal ions is described with respect to natural water conditions. The amalgam electrodes are compared with the corresponding capabilities of ion-selective electrodes. A special cell is described for preparing the amalgam and for filling a hanging amalgam drop electrode. Factors affecting the reproducibility of the standard potentials and slopes, the response time and detection limits are discussed. Complexation measurements are described with lead and zinc amalgam electrodes. Triethylenetetramine, carbonate and nitrolotriacetic acid are used as ligands, to test the ability of these electrodes to measure correctly8 the degree of complexation even at low total-metal. concentrations (down to ca. 10?7 M) and at very low concentrations of free metal ion (10?15 M). Results obtained with well-characterized fulvinc compound and an algal culture medium (AAP) are also reported. The observed results are in compl;ete accordance with theoretical predictions (based on Nernstian behaviour), evven at the lowest concentrations of tltal and free metal ion used. An important limitation is that any oxidant in the solution can interfere by oxidizing the amalgma. Solutions must be carefully degassed to eliminate oxygen. It is shown that the interfering actin of oxidants can be corrected for by means of equations which are theoretically sound, even when the nature of the oxidant is unknown, provided that its content is not too high. Compared to ion-selective electrodes, amalgam electrodes are more reproducible, inexpensive and readily prepared for various metal ions which cannot be measured with ion-selective electrodes.  相似文献   

11.
The stripping voltammetry ofteIlurium(IV) in 0.1 M perchloric acid at gold electrodes is described. Detection limits for solid gold, in situ gold-plated and externally gold-plated rotating glassy carbon disk electrodes are presented. There is no significant increase in sensitivity for the use of solid gold electrodes; 0-25 ppm teIIurium(IV) can be determined by anodic stripping voltammetry at an in situ gold-plated rotating glassy carbon disk electrode. The determination of tellurium in NBS SRM 1632a (Trace Elements in Coal) is described.  相似文献   

12.
Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species.The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination.Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.  相似文献   

13.
Electropolymerization of anthranilic acid/pyrrole (AA/PY) at solid substrate electrodes (platinum, gold, and glassy carbon) gave stable and water-insoluble films under a wide range of pH. Combining high conductivity of the polypyrrole (PPY) and pH independence of the electrochemical activity of the self-doped carboxylic acid-substituted polyaniline allows us to prepare an improved functionalized PPY-modified electrode to collect and measure Cu(I) species. The differential pulse stripping analysis of the copper ions using a polyanthranilic acid-co-polypyrrole (PAA/PPY)-modified electrode consisted of three steps: accumulation, electrochemical reduction to the elemental copper and stripping step. Factors affecting these steps, including electropolymerization conditions, accumulation and stripping medium, reduction potential, reduction time and accumulation time, were systematically investigated. A detection limit of 5.3 x 10(-9) M Cu(I) was achieved for a 7.0 min accumulation. For 12 determinations of Cu(I) at concentrations of 1.0 x 10(-8) M, an RSD of 3.5% was obtained. The log I(p) was found to vary linearly with log[Cu(I)] in the concentration range from 7.0 x 10(-9) to 1.0 x 10(-5) M.  相似文献   

14.
The immobilisation of nanoparticles from solution at a solid surface followed by anodic stripping voltammetry is a simple technique allowing the analysis of nanoparticle concentrations and identity. We report that the modification of gold electrodes with meso‐2,3‐dimercaptosuccinic acid (DMSA) shows a useful increase in the adsorption rate of silver nanoparticles on a gold substrate showing that the chemical modification of the electrode is analytically advantageous.  相似文献   

15.
《Electroanalysis》2005,17(7):549-555
Carbon film disk electrodes with Nafion coatings have been characterized by electrochemical impedance spectroscopy (EIS) with a view to a better understanding of their advantages and limitations in electroanalysis, particularly in anodic stripping voltammetry of metal ions. After initial examination by cyclic voltammetry, spectra were recorded over the full potential range in acetate buffer solution at the bare electrodes, electrodes electrochemically pretreated in acid solution, and Nafion‐coated pretreated electrodes in the presence and absence of dissolved oxygen. EIS equivalent circuit analysis clearly demonstrated the changes between these electrode assemblies. In order to simulate anodic stripping voltammetry conditions, spectra were also obtained in the presence of cadmium and lead ions in solution at Nafion‐coated electrodes, both after metal ion deposition and following re‐oxidation. Permanent changes to the structure of the Nafion film occurred, which has implications for use of these electrode assemblies in anodic stripping voltammetry at relatively high trace metal ion concentrations.  相似文献   

16.
《Electroanalysis》2017,29(12):2685-2688
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn in alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH)4 and Zn(OH)42−. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of≤−1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r‐squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. These results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.  相似文献   

17.
Electrochemical and quartz crystal microbalance (QCM) measurements were used to determine the mechanisms of anodic stripping voltammetry (ASV) processes during lead determination in samples containing copper on a solid electrode modified by 2,2′-bipyridyl (Bpy) in polyaniline (PANI). Deposition of lead and copper results in the formation of solid solutions, which may change the results. An improvement of lead determination was achieved by the formation of stable copper complexes with Bpy. The molecules of Bpy were immobilized on a solid electrode in a PANI film. Deposition and stripping of lead and lead with copper were compared on three different electrodes: gold, gold coated with PANI and gold coated with PANI modified by Bpy. The results were used to propose mechanisms of deposition and stripping processes as well as a practical procedure of using this kind of electrode.  相似文献   

18.
Gholivand MB  Nozari N 《Talanta》2001,54(4):597-602
Poly(vinyl chloride) membrane electrode, that is highly selective and sensitive to Cu(II) ions, was developed by using 2,2'-dithiodianiline and dibutyl phthalate as carrier and plasticizer, respectively. The electrode exhibits good potentiometric response for Cu(II) over a wide concentration range (5.0x10(-2)-7.0x10(-7) mol l(-1)) with Nernstian slope of 30+/-1 mV per decade. The response time of the electrode is 10 s and it has been used for a period of one month and exhibits good selectivity towards Cu(2+) in comparison to alkali, alkaline earth, transition and heavy metal ions, with no interference caused by Pb(2+), Cd(2+) and Fe(+2) which are known to interfere with many other copper electrodes.  相似文献   

19.
New PVC membrane ion selective electrodes based on 1,3,5-Tris(8-quinolinoxymethyl)-2,4,6-trimethylbenzene (MO8HQ) are reported. The basic sensing material belongs to the group of tripodal ionophores. Also their derivatives prepared by placing suitable substitutents at fifth position of 8-oxine moiety, i.e, 1,3,5-Tris(5-chloro-8-quinolinoxymethyl)-2,4,6-trimethylbenzene (5CHQ), 1,3,5-Tris(5-benzoyl-8-quinolinoxymethyl)-2,4,6-trimethylbenzene (5BHQ) and 1,3,5-Tris[(5-phenylhydroxymethylene)-8-quinolinoxymethyl]-2,4,6-trimethylbenzene (HYD-8HQ) ionophores have also been used to make copper-selective membrane electrodes. Among all the four electrodes, MO8HQ and HYD-8HQ ionophores based electrodes show excellent response towards Cu (II) ions. The electrodes having composition 33% PVC, 4% MO8HQ and 63% dibutyl phthalate (DBP) and 33% PVC, 6% HYD-8HQ, 63% dibutyl phthalate (DBP) exhibit a good Nernstian response to Cu (II) ions in the range of 1.0 × 10−6 to 1 × 10−1 M. The electrode shows a reasonably fast response time of 15 s. The effect of pH and electrode response is also reported. It shows good selectivity for Cu (II) ions in comparison to heavy metal ions, transition metal ions and for alkali and alkaline earth metal ions. The electrode response and selectivity remains unchanged for at least 5 months. The electrode can be used as an indicator electrode in the potentiometric titration of Cu (II) ions with EDTA.  相似文献   

20.
Liquid membrane electrodes of myristate soaps of heavy metals, namely copper, cadmium, zinc, nickel, cobalt, strontium and barium in a benzene-n-butanol mixture were prepared. Each electrode showed nernstian response in common metal ion test solution. The range of concentration of the test solution for the Nernstian behaviour lies between 10?4 and 10?1M. With a dissimilar metal ion in test solution the metal soap liquid membrane electrode indicates deviations from Nernst's equation depending on the nature of the metal ion, suggesting different selectivities for different ions. The selectivity ratios are therefore calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号