首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
Tubular metal-organic complex (C2H9N2)2(C2H10N2)0.5[MoO2(OC6H4O)2] has been synthesized. The title complex crystallizes in the tetragonal system, space group P4(2)/n with a = 25.214(8), c = 7.484(4) ?, and Z = 8. The X-ray structural analysis of the complex reveals tube-like framework which is stabilized by hydrogen bond. Chiral anions [Mo(V)O2(OC6H4O)2]3? of the complex have two types of isomers(λ /δ configuration). Helical nanostructure of this metal-organic complex was formed using a sonochemical method. Sonocation may lead to the transformation from the bulk tubular complex to the helical nanostructure. The as-synthesized nanohelices were all double-stranded and left- and right-handed nanohelices were both formed. The helical nanostructure is a new morphology of inorganic-organic hybrid materials on the nanoscale level and the exact formation mechanism of these helices still needs further investigation.  相似文献   

2.
The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.  相似文献   

3.
A kinetic and mechanistic study of chloride substitution by thiourea nucleophiles, namely thiourea, N-methylthiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea in the complexes chlorobis-(2-pyridylmethyl)amineplatinum(II) (Pt1), chloro N-(2-pyridinylmethyl)-8-quinolinamineplatinum(II) (Pt2), chloro N-(2-pyridinylmethylene)-8-quinolinamineplatinum(II) (Pt3) and chlorobis(8-quinolinyl)amineplatinum(II) (Pt4) was undertaken under pseudo-first-order conditions using UV–visible spectrophotometry. The study showed that lability of the chloro leaving group is dependent on the strength of π-interactions between the filled -orbitals of the metal and the empty π*-orbitals of the chelating ligand in the following manner: Pt1 > Pt3 > Pt2 > Pt4. Introduction of the quinoline moiety within the non-labile chelated framework of the Pt(II) complexes results in a more electron-rich metal centre which retards the approach of the nucleophile through repulsion. Moreover, the net σ-effect of the ligand moiety plays a significant role in controlling the reactivity of the complexes. The experimental results are interpreted with the aid of computational data obtained by density functional theory (B3LYP(CPCM)/LANL2DZp//B3LYP/-LANL2DZp) calculations. The mode of substitution remains associative as supported by negative entropies and the dependence of the second-order rate constants on the concentration of entering nucleophiles.  相似文献   

4.
Three‐dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self‐assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt‐TiO2 nano‐network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom‐level thickness precision. The 3D peptide‐TiO2 nano‐network was further decorated with highly monodisperse Pt nanoparticles by using ozone‐assisted ALD. The 3D TiO2 nano‐network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia–borane, generating three equivalents of H2.  相似文献   

5.
We reported a simple and effective green chemistry route for facile synthesis of nanowire-like Pt nanostructures at one step. In the reaction, dextran acted as a reductive agent as well as a protective agent for the synthesis of Pt nanostructures. Simple mixing of precursor aqueous solutions of dextran and K2PtCl4 at 80 °C could result in spontaneous formation of the Pt nanostructures. Optimization of the experiment condition could yield nanowire-like Pt nanostructures at 23:1 molar ratio of the dextran repeat unit to K2PtCl4. Transmission electron microscopy results revealed that as-prepared nanowire-like Pt nanostructures consisted of individual Pt nanoparticles with the size range from 1.7 to 2.5 nm. Dynamic light scattering analysis indicated that as-prepared nanowire-like nanostructures have already formed in solution. The as-prepared nanowire-like Pt nanostructures were further characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. In addition, the ratio dependence and temperature dependence of this reaction have also been investigated. The as-prepared nanowire-like Pt nanostructures can be immobilized on glassy carbon electrodes using an electrochemical coupling strategy, and the resulting nanowire-like Pt nanostructures modified film exhibited an excellent electrocatalytic activity for the reduction of oxygen and the oxidation of NADH.  相似文献   

6.
N 6-Methyladenosine (m6A) represents a relatively abundant modification in eukaryotic RNA. Because m6A has similar properties to adenosine and a low reactivity, limited research has been focused on this nucleoside. In this study, we revealed an important intermediate in the oxidation of m6A through the bicarbonate-activated peroxide system. Over the course of oxidation, we found a new mechanism in which N6-hydroxymethyladenosine (hm6A), N6-formyladenosine (f6A) and N6-hydroperoxymethyladenosine (oxm6A) were intermediate products, and adenosine was the final product. In this study, oxm6A was isolated using HPLC and characterized by mass spectrometry, NMR and diphenyl-1-pyrenylphosphine (DPPP) fluorescence detection. This study provides a new modified nucleoside and demonstrates oxidative demethylation of m6A by reactive oxygen species at the nucleobase level and in RNA strands.  相似文献   

7.
It is well-recognized that the failure of many chemotherapeutics arises due to an inability to induce apoptosis. Most cancers acquire a myriad of pro-survival adaptations, and the vast heterogeneity and accumulation of multiple often unrelated anti-apoptotic signaling pathways have been a major stumbling block towards the development of conventional chemotherapeutics, which can overcome drug resistance. We have developed highly potent and selective HER2-targeted Pt(iv) prodrugs bearing anti-HER2/neu peptides that induce targeted necrosis as a novel strategy to circumvent apoptosis-resistance. These Pt(iv)–peptide conjugates exhibit a unique biphasic mode of cytotoxicity comprising rapid killing of cancer cells via necrosis in the first phase followed by an extended and gradual phase of delayed cell death. We demonstrate that these Pt(iv)–peptide prodrugs are more potent than their Pt(ii) congeners in direct cell-killing and exhibit comparable long-term inhibition of proliferative capacity and with greater selectivity against HER2-positive cancer cells.  相似文献   

8.
TiNn + clusters were generated by laser ablation and analyzed experimentally by mass spectrometry. The results showed that the mass peak of the TiN12 + cluster is dominant in the spectrum. The TiN12 + cluster was further investigated by photodissociation experiments with 266, 532 and 1064 nm photons. Density functional calculations were conducted to investigate stable structures of TiN12 + and the corresponding neutral cluster, TiN12. The theoretical calculations found that the most stable structure of TiN12 + is Ti(N2)6 + with O h symmetry. The calculated binding energy is in good agreement with that obtained from the photodissociation experiments. The most stable structure of neutral TiN12 is Ti(N2)6 with D 3d symmetry. The Ti–N bond strengths are greater than 0.94 eV in both Ti(N2)6 + and its neutral counterpart. The interaction between Ti and N2 weakens the N–N bond significantly. For neutral TiN12, the Ti(N3)4 azide, the N5TiN7 sandwich structure and the N6TiN6 structure are much higher in energy than the Ti(N2)6 complex. The DFT calculations predicted that the decomposition of Ti(N3)4, N5TiN7, and N6TiN6 into a Ti atom and six N2 molecules can release energies of about 139, 857, and 978 kJ mol–1 respectively.  相似文献   

9.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

10.
The combination of solid phase peptide synthesis and endo-β-N-acetylglucosaminidase (ENGase) catalysed glycosylation is a powerful convergent synthetic method allowing access to glycopeptides bearing full-length N-glycan structures. Mannose-terminated N-glycan oligosaccharides, produced by either total or semi-synthesis, were converted into oxazoline donor substrates. A peptide from the human cytomegalovirus (CMV) tegument protein pp65 that incorporates a well-characterised T cell epitope, containing N-acetylglucosamine at specific Asn residues, was accessed by solid phase peptide synthesis, and used as an acceptor substrate. High-yielding enzymatic glycosylation afforded glycopeptides bearing defined homogeneous high-mannose N-glycan structures. These high-mannose containing glycopeptides were tested for enhanced targeting to human antigen presenting cells (APCs), putatively mediated via the mannose receptor, and for processing by the APCs for presentation to human CD8+ T cells specific for a 9-mer epitope within the peptide. Binding assays showed increased binding of glycopeptides to APCs compared to the non-glycosylated control. Glycopeptides bearing high-mannose N-glycan structures at a single site outside the T cell epitope were processed and presented by the APCs to allow activation of a T cell clone. However, the addition of a second glycan within the T cell epitope resulted in ablation of T cell activation. We conclude that chemo-enzymatic synthesis of mannosylated glycopeptides enhances uptake by human APCs while preserving the immunogenicity of peptide epitopes within the glycopeptides, provided those epitopes are not themselves glycosylated.  相似文献   

11.
Bimetallic core‐shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core‐shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core‐shell nanotube arrays were fabricated by ZnO nanorod‐array template‐assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m2 (g Pt)?1, which is close to the value of 59.44 m2 (g Pt)?1 for commercial Pt/C catalysts. The porous Ni@Pt core‐shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core‐shell nanotube arrays make them promising candidates as future high‐performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large‐scale, low‐cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.  相似文献   

12.
The synthesis and characterization of various 6-oxo-verdazyl radicals and their diamagnetic styryl radical trapping products are presented. It is shown that styryl radical trapping products derived from N-phenyl verdazyls show fluorescence whereas the N-methyl congeners are non-fluorescent. In the parent N-phenyl verdazyls fluorescence is fully quenched which renders these compounds highly valuable profluorescent radical probes.  相似文献   

13.
In this work, we describe a facile single-step approach for the simultaneous reduction of graphene oxide to graphene, functional doping of graphene with nitrogen, and loading of the doped graphene with well-dispersed platinum (Pt) nanoparticles using a solvent mixture of ethylene glycol and N-methyl-2-pyrrolidone. The as-prepared Pt/nitrogen-doped graphene (N-graphene) catalysts are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy while the electrocatalytic methanol oxidation properties of the catalysts are evaluated by cyclic voltammetry and chronoamperometry. Compared with an updoped Pt/graphene control catalyst, the Pt/N-graphene catalyst shows a narrower particle size distribution and improved catalytic performance. Considering the facile, green and effective single-step synthetic process for the Pt/N-graphene catalyst, the results are promising for the potential application of these materials in emerging fuel cell technologies.  相似文献   

14.
A kind of fluorescent/phosphorescent dual-emissive conjugated polyelectrolyte has been prepared by introducing phosphorescent platinum(ii) porphyrin (O2-sensitive) into a fluorene-based conjugated polyelectrolyte (O2-insensitive), which can form ultrasmall conjugated polymer dots (FP-Pdots) in the phosphate buffer solution (PBS) via self-assembly caused by their amphiphilic structures with hydrophobic backbones and hydrophilic side chains. These FP-Pdots can exhibit an excellent ratiometric luminescence response to O2 content with high reliability and full reversibility for measuring oxygen levels, and the excellent intracellular ratiometric O2 sensing properties of the FP-Pdots nanoprobe have also been confirmed by the evident change in the I red/I blue ratio values in living cells cultured at different O2 concentrations. To confirm the reliability of the O2 sensing measurements of the FP-Pdots nanoprobe, O2 quenching experiments based on lifetime measurements of phosphorescence from Pt(ii) porphyrin moieties have also been carried out. Utilizing the sensitivity of the long phosphorescence lifetime from Pt(ii) porphyrins to oxygen, the FP-Pdots have been successfully applied in time-resolved luminescence imaging of intracellular O2 levels, including photoluminescence lifetime imaging and time-gated luminescence imaging, which will evidently improve the sensing sensitivity and reliability. Finally, in vivo oxygen sensing experiments were successfully performed by luminescence imaging of tumor hypoxia in nude mice.  相似文献   

15.
The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(H 2 Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(dCH 3 Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF 3 Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, \( k_{{{\text{obs }}\left( {1/2} \right)}} \), for the stepwise substitution of the first and second aqua ligands obeyed the rate law: \( k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] \). The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF 3 Py) > Pt(H 2 Py) > Pt(dCH 3 Py), while that of the second was Pt(H 2 Py) ≈ Pt(dCF 3 Py) > Pt(dCH 3 Py). Lower pK a values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.  相似文献   

16.
Silver platinum binary alloys with compositions between about Ag2Pt98 and Ag95Pt5 at < 400 °C have largely not been observed in bulk due to the large immiscibility between these two metals. We present in this paper that Ag–Pt alloy nanostructures can be made in a broad composition range. The formation of Ag–Pt nanostructures is studied by powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX). Our results indicate that lattice parameter changes almost linearly with composition in these Ag–Pt nanomaterials. In another word, lattice parameter and composition relationship follows the Vegard's law, which is a strong indication for the formation of metal alloys. Our transmission electron microscopy (TEM) study shows that the silver-rich Ag–Pt alloy nanostructures have spherical shape, while the platinum-rich ones possess wire-like morphology. The stability and crystal phase are investigated by annealing the alloy nanostructures directly or on carbon supports.  相似文献   

17.
Ferromagnetic two-dimensional (2D) ultrathin nanosheets hold great promise for next generation electronics. Ferromagnetic metal-free materials that usually possess only an s/p electronic configuration with weak spin–orbit coupling and a large spin relaxation time, would play an important role in constructing future spintronic devices. However, the absence of an intrinsic spin ordering structure in most metal-free materials greatly hampers the widening scope of ferromagnetic 2D nanostructures as well as in-depth understanding of their ferromagnetic nature. Herein, the induction of intrinsic ferromagnetism in 2D metal-free g-C3N4 ultrathin nanosheets has been achieved through a new effective strategy whereby hydrogen dangling bonds are introduced. In our case, g-C3N4 ultrathin nanosheets with hydrogen dangling bonds showed obvious room temperature ferromagnetic behavior that could even be tuned by the concentration of hydrogen. This work will pave a new pathway to engineer the properties of 2D nanomaterial systems.  相似文献   

18.
《中国化学快报》2021,32(11):3288-3297
Heterogeneous nanostructures that are defined as a hybrid structure consisting of two or more nanoscale domains with distinct chemical compositions or physical characteristics have attracted intense efforts in recent years. In this review, we focus on the introduction of a number of heterogeneous nanostructures derived using core-shell Ag–Pt nanoparticles as starting materials, including hollow, dimeric and composite structures and also highlight their application in catalyzing electrochemical reactions, e.g., methanol oxidation reaction and oxygen reduction reaction. This review not only shows the capability of core-shell Ag–Pt nanoparticles in producing various heterogeneous nanostructures as starting templates, but also highlights the structural design or electronic interaction that endows the heterogeneous nanostructures with enhanced catalytic properties either in methanol oxidation or in oxygen reduction. Further, we also make some perspectives for more heterogeneous nanostructures that may be prepared by using core-shell Ag–Pt particles or their derivatives so as to offer the readers the opportunities and challenges in this field.  相似文献   

19.
Triflic acid (HOTf)-bound nonheme Mn(iv)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(iv)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.  相似文献   

20.
A facile and low‐cost method has been developed to successfully fabricate 3D flower‐like and sphere‐like Ni2GeO4 nanostructures with tunable sizes and shapes. It is found that the hard template, polymethyl methacrylate (PMMA) nanopsheres, is essential to the formation of the final products. The as‐prepared nanostructures can serve as an outstanding support for Pt nanoparticles after surface modification with L ‐lysine. In the catalytic test of CO oxidation, Pt–Ni2GeO4 nanoflowers exhibited much higher catalytic performance compared with Pt–Ni2GeO4 nanospheres, representing a typical size‐dependent catalytic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号