首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pt nanoparticles are typically decorated as co‐catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co‐catalyst loadings is a key challenge in the field. We explore a dewetting‐dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co‐catalyst mass activity for H2 generation. For this, we sputter first Pt‐Ni bi‐layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting‐alloying of the Pt‐Ni bi‐layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt‐decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non‐porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co‐catalyst, which provides an increased surface‐to‐volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co‐catalyst surface for H2 evolution.  相似文献   

2.
An area‐selective atomic layer deposition (AS‐ALD) method is described to construct oxide nanotraps to anchor Pt nanoparticles (NPs) on Al2O3 supports. The as‐synthesized catalysts have exhibited outstanding room‐temperature CO oxidation activity, with a significantly lowered apparent activation energy (ca. 22.17 kJ mol−1) that is half that of pure Pt catalyst with the same loading. Furthermore, the structure shows excellent sintering resistance with the high catalytic activity retention up to 600 °C calcination. The key feature of the oxide nanotraps lies in its ability to anchor Pt NPs via strong metal–oxide interactions while still leaving active metal facets exposed. Our reported method for forming such oxide structure with nanotraps shows great potential for the simultaneous enhancement of thermal stability and activity of precious metal NPs.  相似文献   

3.
《化学:亚洲杂志》2017,12(3):314-323
Self‐standing TiO2 nanotube layers in the form of membranes are fabricated by self‐organizing anodization of Ti metal and a potential shock technique. The membranes are then decorated by sputtering different Pt amounts i) only at the top, ii) only at the bottom or iii) at both top and bottom of the tube layers. The Pt‐decorated membranes are transferred either in tube top‐up or in tube top‐down configuration onto FTO slides and are investigated, after crystallization, as photocatalysts for H2 generation using either front or back‐side light irradiation. Double‐side Pt‐decoration of the tube membranes leads to higher H2 generation rates (independently of tube and light‐irradiation configuration) compared to membranes decorated at only one side with similar overall Pt amounts. The results suggest that this effect cannot be only ascribed to the overall amount of Pt co‐catalyst as such but also to its distribution at both tube extremities. This leads to optimized light absorption and electron diffusion/transfer dynamics: the central part of the membranes acts as light‐harvesting zone and electrons therein generated can diffuse towards the Pt/TiO2 active zones (tube extremities) where they can react with the environment and generate H2.  相似文献   

4.
A facile and low‐cost method has been developed to successfully fabricate 3D flower‐like and sphere‐like Ni2GeO4 nanostructures with tunable sizes and shapes. It is found that the hard template, polymethyl methacrylate (PMMA) nanopsheres, is essential to the formation of the final products. The as‐prepared nanostructures can serve as an outstanding support for Pt nanoparticles after surface modification with L ‐lysine. In the catalytic test of CO oxidation, Pt–Ni2GeO4 nanoflowers exhibited much higher catalytic performance compared with Pt–Ni2GeO4 nanospheres, representing a typical size‐dependent catalytic property.  相似文献   

5.
The hydrogenation of crotonaldehyde in the presence of supported platinum nanoparticles was used to determine how the interaction between the metal particles and their support can control catalytic performance. Using gas‐phase catalytic reaction studies and in situ sum‐frequency generation vibrational spectroscopy (SFG) to study Pt/TiO2 and Pt/SiO2 catalysts, a unique reaction pathway was identified for Pt/TiO2, which selectively produces alcohol products. The catalytic and spectroscopic data obtained for the Pt/SiO2 catalyst shows that SiO2 has no active role in this reaction. SFG spectra obtained for the Pt/TiO2 catalyst indicate the presence of a crotyl‐oxy surface intermediate. By adsorption through the aldehyde oxygen atom to an O‐vacancy site on the TiO2 surface, the C?O bond of crotonaldehyde is activated, by charge transfer, for hydrogenation. This intermediate reacts with spillover H provided by the Pt to produce crotyl alcohol.  相似文献   

6.
We have designed a new Pt/SnO2/graphene nanomaterial by using L ‐arginine as a linker; this material shows the unique Pt‐around‐SnO2 structure. The Sn2+ cations reduce graphene oxide (GO), leading to the in situ formation of SnO2/graphene hybrids. L ‐Arginine is used as a linker and protector to induce the in situ growth of Pt nanoparticles (NPs) connected with SnO2 NPs and impede the agglomeration of Pt NPs. The obtained Pt/SnO2/graphene composites exhibit superior electrocatalytic activity and stability for the ethanol oxidation reaction as compared with the commercial Pt/C catalyst owing to the close‐connected structure between the Pt NPs and SnO2 NPs. This work should have a great impact on the rational design of future metal–metal oxide nanostructures with high catalytic activity and stability for fuel cell systems.  相似文献   

7.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

8.
The synergistic effect between metal and TiO2 nanoparticles brings about new, enhanced functionalities for a myriad of applications, ranging from labeling and sensing to catalysis and surface‐enhanced Raman scattering. Although extensive work has been done in the preparation of concentric TiO2‐coated metal nanostructures, current methods for the synthesis of noncentrosymmetric morphologies are still very limited. This Focus review summarizes the various methods used to prepare TiO2‐coated metal nanostructures, with a particular emphasis on noncentrosymmetric morphologies, their novel plasmonic properties, and their promising applications in the fields of catalysis and photocatalysis.  相似文献   

9.
Semi‐metallic TiO2 nanotube arrays (TiOxCy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non‐enzymatic glucose electro‐oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2. Moreover, the Ni(OH)2/TiOxCy NT‐based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro‐oxidation, and thus provides a promising and cost‐effective sensing platform for non‐enzymatic glucose detection.  相似文献   

10.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

11.
Pt alloy nanostructures show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. Herein, three‐dimensional (3D) Pt‐Pd‐Co trimetallic network nanostructures (TNNs) with a high degree of alloying are synthesized through a room temperature wet chemical synthetic method by using K2PtCl4/K3Co(CN)6–K2PdCl4/K3Co(CN)6 mixed cyanogels as the reaction precursor in the absence of surfactants and templates. The size, morphology, and surface composition of the Pt‐Pd‐Co TNNs are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), energy dispersive spectroscopy (EDS), EDS mapping, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). The 3D backbone structure, solid nature, and trimetallic properties of the mixed cyanogels are responsible for the 3D structure and high degree of alloying of the as‐prepared products. Compared with commercially available Pt black, the Pt‐Pd‐Co TNNs exhibit superior electrocatalytic activity and stability towards the ORR, which is ascribed to their unique 3D structure, low hydroxyl surface coverage and alloy properties.  相似文献   

12.
A feasible strategy is reported for the synthesis of a disk‐like Pt/CeO2‐p‐TiO2 catalyst derived from the titanium‐based metal–organic framework (MOF) MIL‐125(Ti) through a few valid steps. To verify the successful synthesis and structural features of the Pt/CeO2‐p‐TiO2 catalyst, as‐prepared samples were characterized using several techniques. The characterizations demonstrated that MOF‐derived porous TiO2 was appropriate for application as a support owing to its moderate surface area (101 m2 g?1) and suitable pore size (6 nm). Moreover, to study the effect of calcination temperature on the catalytic performance, the obtained catalyst was calcined at various temperatures. It was found that Pt/CeO2‐p‐TiO2 calcined at 550 °C exhibited the highest catalytic performance, evaluated by means of the reduction of 4‐nitrophenol monitored by UV–visible spectra. Furthermore, this catalyst showed good reusability with a conversion of 94% even after six cycles. Finally, a possible reaction mechanism was proposed to explain the reduction of 4‐nitrophenol to 4‐aminophenol over the Pt/CeO2‐p‐TiO2 catalyst.  相似文献   

13.
《Electroanalysis》2017,29(11):2591-2601
In present work, reduced graphene oxide nanosheets (rGO) decorated with trimetallic three‐dimensional (3D) Pt−Pd−Co porous nanostructures was fabricated on glassy carbon electrode (Pt−Pd−Co/rGO/GCE). First, GO suspension was drop‐casted on the electrode surface, then GO film reduction was carried out by cycling the potential in negative direction to form the rGO film modified GCE (rGO/GCE). Then, electrodeposition of the cobalt nanoparticles (CoNPs) as sacrificial seeds was performed onto the rGO/GCE by using cyclic voltammetry. Afterward, Pt−Pd−Co 3D porous nanostructures fabrication occurs through galvanic replacement (GR) method based on a spontaneous redox process between PtCl2, PdCl2, and CoNPs. The morphology and structure of the Pt−Pd−Co/rGO porous nanostructure film was characterized by scanning electron microscopy, energy dispersive spectroscopy and X‐ray diffraction method. The performance of the prepared electrode was investigated by various electrochemical methods including, cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic activity of the as‐prepared modified electrode with high surface areas was evaluated in anodic oxidation of ethylene glycol. The study on electrocatalytic performances revealed that, in comparison to various metal combinations in modified electrodes, trimetallic Pt−Pd−Co/rGO/GCE exhibit a lower onset potential, significantly higher peak current density, high durability and stability for the anodic oxidation of ethylene glycol. The excellent performances are attributed to the rGO as catalysts support and resulting synergistic effects of the trimetallic and appropriate characteristics of the resulted 3D porous nanostructures. Moreover, the influence of various concentrations of ethylene glycol, the potential scan rate and switching potential on the electrode reaction, in addition, long‐term stability have been studied by chronoamperometric and cyclic voltammetric methods.  相似文献   

14.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

15.
Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal‐oxide interfaces based on a tube‐in‐tube nanostructure using template‐assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2O3 nanotube (Ni/Al2O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube‐in‐tube tandem catalyst with multiple metal‐oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts.  相似文献   

16.
We present a systemic investigation of a galvanic replacement technique in which active‐metal nanoparticles are used as sacrificial seeds. We found that different nanostructures can be controllably synthesized by varying the type of more noble‐metal ions and liquid medium. Specifically, nano‐heterostructures of noble metal (Ag, Au) or Cu nanocrystals on active‐metal (Mg, Zn) cores were obtained by the reaction of active‐metal nanoparticles with more noble‐metal ions in ethanol; Ag nanocrystal arrays were produced by the reaction of active‐metal nanoparticles with Ag+ ions in water; spongy Au nanospheres were generated by the reaction of active‐metal nanoparticles with AuCl4? ions in water; and SnO2 nanoparticles were prepared when Sn2+ were used as the oxidant ions. The key factors determining the product morphology are shown to be the reactivity of the liquid medium and the nature of the oxidant–reductant couple, whereas Mg and Zn nanoparticles played similar roles in achieving various nanostructures. When microsized Mg and Zn particles were used as seeds in similar reactions, the products were mainly noble‐metal dendrites. The new approach proposed in this study expands the capability of the conventional nanoscale galvanic replacement method and provides new avenues to various structures, which are expected to have many potential applications in catalysis, optoelectronics, and biomedicine.  相似文献   

17.
Herein, a series of porous nano‐structured carbocatalysts have been fused and decorated by Mo‐based composites, such as Mo2C, MoN, and MoP, to form a hybrid structures. Using the open porosity derived from the pyrolysis of metal–organic frameworks (MOFs), the highly dispersive MoO2 small nanoparticles can be deposited in porous carbon by chemical vapor deposition (CVD). Undergoing different treatments of carbonization, nitridation, and phosphorization, the Mo2C‐, MoN‐, and MoP‐decorated carbocatalysts can be selectively prepared with un‐changed morphology. Among these Mo‐based composites, the MoP@Porous carbon (MoP@PC) composites exhibited remarkable catalytic activity for the hydrogen evolution reaction (HER) in 0.5 m H2SO4 aqueous solution versus MoO2@PC, Mo2C@PC, and MoN@PC. This study gives a promising family of multifunctional lab‐on‐a‐particle architectures which shed light on energy conversion and fuel‐cell catalysis.  相似文献   

18.
Effective control over the morphology and size of Pd/Pt nanoparticles is currently of immense interest because their electronic, optical, and catalytic properties are superior to pure platinum nanoparticles. However, control over the nanoparticle shape is still challenging. Therefore, a novel design and synthetic route needs to be developed to obtain a high‐performance catalyst. Herein, a hierarchical three‐component nanocomposite structure system (HTNSS) composed of graphene, TiO2, and Pd@Pt core–shell nanoparticles was designed and synthesized by a sequential strategy that focuses on constructing the monolithic structure rather than limited single‐component counterparts. The resulting composites were characterized by various techniques, which showed that the Pd@Pt core–shell nanoparticles were preferentially deposited on the peripheral interface of the graphene and TiO2 nanoparticles. The photoelectrical and catalytic performances were obviously improved relative to the commercially available E‐TEK Pt/C owing to their synergistic effect.  相似文献   

19.
Functional nanostructures of self‐assembled block copolymers (BCPs) incorporated with various inorganic nanomaterials have received considerable attention on account of their many potential applications. Here we demonstrate the two‐dimensional self‐assembly of anisotropic titanium dioxide (TiO2) nanocrystals (NCs) and metal nanoparticles (NPs) directed by monolayered poly(styrene)‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) copolymer inverse micelles. The independent position‐selective assembly of TiO2 NCs and silver nanoparticles (AgNPs) preferentially in the intermicelle corona regions and the core of micelles, respectively, for instance, was accomplished by spin‐coating a mixture solution of PS‐b‐P4VP and ex situ synthesized TiO2 NCs, followed by the reduction of Ag salts coordinated in the cores of micelles into AgNPs. Hydrophobic TiO2 NCs with a diameter and length of approximately 3 nm and 20–30 nm, respectively, were preferentially sequestered in the intermicelle nonpolar PS corona regions energetically favorable with the minimum entropic packing penalty. Subsequent high‐temperature annealing at 550 °C not only effectively removed the block copolymer but also transformed the TiO2 NCs into connected nanoparticles, thus leading to a two‐dimensionally ordered TiO2 network in which AgNPs were also self‐organized. The enhanced photocatalytic activity of the AgNP‐decorated TiO2 networks by approximately 27 and 44 % over that of Ag‐free TiO2 networks and randomly deposited TiO2 nanoparticles, respectively, was confirmed by the UV degradation property of methylene blue.  相似文献   

20.
A simple and practical technique to synthesize nanosized platinum particles loaded on TiO2 (Pt–TiO2) by using a microwave (Mw)‐assisted deposition method has been exploited in the development of a highly efficient photocatalyst for the formation of H2 and N2 gases from harmful nitrogen‐containing chemical wastes, for example, aqueous ammonia (NH3). Upon Mw irradiation, a platinum precursor can be deposited quickly on the TiO2 surface from an aqueous solution of platinum and subsequent reduction with H2 affords the nanosized platinum metal particles with a narrow size distribution (Mw‐Pt–TiO2). Characterization by CO adsorption, platinum LIII‐edge X‐ray absorption fine structure analysis, and TEM analysis revealed that the size of the metal nanoparticles strongly depended on the preparation methods. Smaller platinum nanoparticles were obtained by the Mw heating method than those obtained by conventional preparation techniques, such as photoassisted deposition (PAD), impregnation (Imp), and equilibrium adsorption (EA) deposition by conventional convective heating. The H2 and N2 formation rates increased with increasing dispersity of platinum. Pt–TiO2 prepared by the Mw heating method exhibited a specifically high H2 formation activity in the photocatalytic decomposition of aqueous NH3 in a nearly stoichiometric 3:1 (H2/N2) molar ratio under inert conditions. The present Mw heating method is applicable to a variety of anatase‐type TiO2 species possessing different specific surface areas to provide small and highly dispersed platinum nanoparticles with a narrow size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号