首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

2.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

3.
Na2Mn2S3 was oxidatively deintercalated using iodine in acetonitrile to yield Na1.3Mn2S3, with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li0.7Na1.3Mn2S3. When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS2, along with MnS and residual Na2Mn2S3. Single crystal X-ray diffraction structural analysis of LiNaMnS2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) Å, c=6.7759(14) Å, V=96.15(3) Å3 (Z=1, wR2=0.0367) in the NaLiCdS2 structure-type.  相似文献   

4.
Li2Rh3B2 has been synthesized at 1000 °C from a stoichiometric mix of rhodium and boron and an excess of lithium. Li2Rh3B2 crystallizes in the orthorhombic space group Pbam (no. 55, Z=2) with room temperature lattice constants a=5.7712(1) Å, b=9.4377(2) Å, c=2.8301(1) Å and cell volume 154.149(6) Å3. The structure was solved from single crystal X-ray diffraction yielding the final R indices (all data) R1=2.8% and wR2=4.7%. The structure is a distortion of the CeCo3B2 structure type, containing a network of Rh6B trigonal prisms and short Li-Li contacts of 2.28(2) Å. Li2Rh3B2 is a diamagnetic metal with a room temperature resistivity of 19 μΩ cm, as determined by magnetic susceptibility and single crystal transport measurements. The measured diamagnetism and electronic structure calculations show that Li2Rh3B2 contains rhodium in a d10 configuration.  相似文献   

5.
Crystals of two new layered BaNaSc(BO3)2 (I) and BaNaY(BO3)2 (II) orthoborates are grown from the melt-solution by the spontaneous crystallization onto the platinum loop. Single crystal X-ray analysis showed that the compounds are isostructural with the space group R3¯, a=5.23944(12) and 5.3338(2) Å, and c=34.5919(11) and 35.8303(19) Å for I and II, respectively, Z=6. The distinctive feature of the structure is the close-packed composite anion-cation (Ba,Na)(BO3) layers. The layers are combined into the base building packages of two types: {M3+[Ba2+(BO3)3−]2}+ and {M3+[Na+(BO3)3−]2}, where M is Sc or Y. Neutral-charge two-package (four-layer) blocks are stacked by the rhombohedral principle into twelve layers of the cubic packing.  相似文献   

6.
Two new ternary chromium sulfides, Ba3CrS5, and Ba3Cr2S6 were synthesized by the reaction of sulfur, barium sulfide, and chromium metal under a high pressure of 5 GPa at 1200°C. Ba3CrS5 crystallized in the hexagonal space group P63cm (No. 185) with a=9.1208(3) Å, c=6.1930(3) Å, V=446.17(3) Å3, and Z=6. It had a column structure with one-dimensional chains of [CrS3] composed of face-sharing CrS6 octahedra surrounded with Ba2+ ions. Additional S columns surrounded with Ba ions were running along with the CrS6 columns. Ba3Cr2S6 crystallized in the trigonal space group R-3c (No. 167) with a=11.8179(7) Å, c=12.796(1) Å, V=1547.7(2) Å3, and Z=6. The structure of Ba3Cr2S6 also contains [CrS3] chains but the chains are composed of octahedral and trigonal prismatic CrS6 units, which are alternately stacked in a face-sharing manner. The formal charges of Cr ions in Ba3CrS5 and Ba3Cr2S6 are 4+ and 3+, respectively.  相似文献   

7.
A new Li-containing quaternary nitride, Li4Sr3Ge2N6, was obtained as single crystals from constituent elements in molten Na. It crystallizes in space group C2/m (No. 12) with a=6.1398(7) Å, b=10.021(1) Å, c=6.3130(7) Å, β=91.279(2)°, and Z=2. It contains the first example of isolated nitridogermanate anions of Ge2N610−, which is also the first example of edge-sharing tetrahedral [GeN4].  相似文献   

8.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

9.
Single crystals of both Ba7Li3Ru4O20 and Ba4NaRu3O12 were grown from reactive molten hydroxide fluxes. Ba7Li3Ru4O20 is a 7L-layer perovskite-related phase resulting from the stacking of six [AO3] layers and one oxygen deficient [AO2] layer, thereby creating LiO4 tetrahedra in addition to the LiO6 octahedra and face-sharing Ru2O9 bi-octahedra formed from the [AO3] layers. The compound crystallizes in the space group with a=5.7927(1) Å and c=50.336(2) Å, Z=3. Ba4NaRu3O12 crystallizes in the space group P63mc with lattice parameters of a=5.8014(2) Å and c=19.2050(9) Å, Z=2. Ba4NaRu3O12 is identical to a previously reported neutron refinement structure. The magnetic properties of Ba7Li3Ru4O20 are also reported.  相似文献   

10.
The crystal structure of Na3DySi6O15 has been solved and refined to an R1=2.97% (wR2=8.25%) for 1311 independent reflections. The compound was found to crystallize within the orthorhombic system with the space group Cmca (Z=8) and the lattice parameters: a=14.590(7) Å, b=17.813(4) Å, c=10.519(2) Å, V=2734.0 Å3, Dcal=3.11 g/cm3. The structure of Na3DySi6O15 is a filled variant of the zektzerite with S like corrugated double chains of [SiO4] tetrahedral, connected via Na+ and Dy3+ cations and running parallel to c-axis. The three-dimensional network results from the packing of these chains along [100] by skewering them in rods represented by the tunnels delimited by the S shape of the silicate chains. One of the main peculiar features of the Na3DySi6O15 structure is the location of Na+ in tetrahedral sites with rather short Na-O bond lengths (2×2.243 and 2×2.262 Å).  相似文献   

11.
The title compound was prepared by direct fusion of the corresponding elements at 800°C followed by slow cooling to room temperature. It crystallizes in the orthorhombic space group Pbcm (No. 57) with a=11.340(2), b=8.745(2), and c=14.920(2) Å, V=1479.8(5) Å3, and Z=4. The structure is made of isolated V-shaped trimers As35− and sodium and barium countercations. According to magnetic and resistivity measurements, Na4Ba3As6 is a narrow-gap semiconductor, i.e. a closed-shell compound that fulfills the Zintl concept.  相似文献   

12.
The high-temperature polymorphs of two photocatalytic materials, BiNbO4 and BiTaO4 were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO4 and BiTaO4 crystallize into the triclinic system P1¯ (No. 2), with a=5.5376(4) Å, b=7.6184(3) Å, c=7.9324(36) Å, α=102.565(3)°, β=90.143(2)°, γ=92.788 (4)°, V=326.21 (5) Å3, Z=4 and a=5.931 (1) Å, b=7.672 (2) Å, c=7.786 (2) Å, α=102.94 (3)°, β=90.04 (3)° γ=93.53 (3)°, V=344.59 (1) Å3 and Z=4, respectively. The structures along the c-axis, consist of layers of [Bi2O2] units separated by puckered sheets of (Nb/Ta)O6 octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO4 towards aromatics containing quinonic and azo functional groups.  相似文献   

13.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

14.
K2Li(NH2)3 (1) was the only crystalline product obtained from the reaction of potassium with dilithium decahydro-closo-decaborate Li2B10H10 in liquid ammonia at −38 °C. The compound crystallizes in the space group P42/m with Z=4, a=6.8720(5) Å, c=11.706(1) Å and V=552.81(7) Å3. The investigated crystal-chemically isotypic sodium compound K2Na(NH2)3 (2) was merohedrally twinned and crystallized from a reaction mixture containing potassium and disodium decahydro-closo-decaborate Na2B10H10 in liquid ammonia with a=7.0044(5) Å, c=12.362(1) Å and V=606.48(9) Å3. The compounds contain pairs of edge sharing tetraamidolithium or tetraamidosodium tetrahedra which are interconnected by potassium ions forming three-dimensional infinite networks.  相似文献   

15.
The high-pressure behavior of Li2CO3 is studied up to 25 GPa with synchrotron angle-dispersive powder X-ray diffraction in diamond anvil cells and synthesis using a multi-anvil apparatus. A new non-quenchable hexagonal polymorph (P63/mcm, Z=2) occurs above 10 GPa with carbonate groups in a staggered configuration along the c-axis—a=4.4568(2) Å and c=5.1254(6) Å at 10 GPa. Two columns of face-shared distorted octahedra around the Li atoms are linked through octahedral edges. The oxygen atoms are coordinated to one carbon atom and four lithium atoms to form a distorted square pyramid. Splittings of X-ray reflections for the new polymorph observed above about 22 GPa under non-hydrostatic conditions arise from orthorhombic or monoclinic distortions of the hexagonal lattice. The results of this study are discussed in relation to the structural features found in other Me2CO3 carbonates (Me: Na, K, Rb, Cs) at atmospheric conditions.  相似文献   

16.
Three new intermetallic phases, BaLi2.1In1.9, BaLi1.12In0.98, and BaLi1.06In1.16 and two subnitrides Li35In45Ba39N9 and LiIn2Ba3N0.83 have been synthesized and their crystal structures have been determined. According to single crystal X-ray diffraction data BaLi2.1In1.9 and BaLi1.12In0.98 crystallize with hexagonal symmetry (BaLi2.1In1.9: P63/mmc, a=10.410(2), c=8.364(2) Å, Z=6, V=785.0(2) Å3) and BaLi1.12In0.98: P6/mmm, a=17.469(1), c=10.6409(7) Å, Z=30, V=2813.5(8) Å3), while BaLi1.06In1.16 has a rhombohedral structure (R-3c, a=18.894(3), c=85.289(17) Å, Z=276, V=26368(8) Å3). BaLi2.1In1.9 is isostructural with the known phase BaLi4. The phase BaLi1.12In0.98 is structurally related to Na8K23Cd12In48, while BaLi1.06In1.16 is isostructural with Li33.3Ba13.1Ca3. A sample containing structurally similar BaLi1.12In0.98 and BaLi1.02In1.16 was also investigated by transmission electron microscopy. Li35In45Ba39N9 and LiIn2Ba3N0.83 crystallize with tetragonal (I-42m, a=15.299(2), c=30.682(6) Å, Z=2, V=7182(2) Å3) and cubic (Fd-3m, a=14.913(2) Å, Z=8, V=3316.7(7) Å3) symmetry, respectively. While the first-mentioned subnitride belongs to the Li80Ba39N9 structure type, the second extends the structural family of Ba6In4.78N2.72. The structural features of the new compounds are discussed in comparison to the known phases and the results of total energy calculations.  相似文献   

17.
A new compound, sodium tin trifluoride (NaSnF3, which we denote BING-12 for SUNY at Binghamton, Structure No. 12), was synthesized solvothermally from a pyridine-water solvent system. The new compound crystallized in the monoclinic space group C2/c (No. 15), with a=11.7429(12) Å, b=17.0104(18) Å, c=6.8528(7) Å, β=100.6969(2)°, V=1345.1(2) Å3 and Z=16. The layered structure consists of outer pyramidal SnF3 units, where the fluorides surround a central layer of six- and seven-coordinate sodium atoms. The layers are stabilized by charged Na+ galleries that reside in the center of the layers. Tin trifluorophosphate (Sn3F3PO4, Compound 2) was isolated from a related synthetic system, and crystallized in the rhombohedral space group R3 (No. 146), with a=11.8647(11) Å, c=4.6291(6) Å, V=564.34(10) Å3 and Z=3. The framework is made up of helical -Sn-F- chains, which are connected by phosphate groups. The materials were characterized by powder X-ray diffraction (PXRD), variable temperature PXRD (VT-PXRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).  相似文献   

18.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

19.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

20.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号