首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Picker flow microcalorimeter was used to determine molar excess heat capacities CPE at 298.15 K for mixtures of carbon tetrachloride + n-heptane, n-nonane, and n-decane. The excess heat capacities are negative in all cases. The absolute value |CPE| increases with increasing chain length of the alkane. A formal interchange parameter, cP12, is calculated and its dependence on n-alkane chain length is discussed briefly in terms of molecular orientations.  相似文献   

2.
A dynamic flow microcalorimeter of the Picker design was used to measure enthalpies of mixing at 298.15 K and atmospheric pressure of the six binary systems bromobenzene + n-hexane, + n-heptane, + n-nonane, + n-tetradecane, + cyclohexane, and + benzene. Within the homologous series of n-alkane systems, the interaction parameter, h12, calculated from rigid-lattice group contribution theory, decreases weakly with increasing chain length of the alkane. This behavior is quite analogous to that observed with chloro-derivatives of benzene + n-alkane.  相似文献   

3.
Excess volumes VE measured at 298.15 K in a successive-dilution dilatometer are reported for binary mixtures of the n-alkanols C1 to C4 + n-heptane. For ethanol +, and n-butanol + n-heptane, the measurements were extended to high dilutions of alkanol. VE is positive for all of the mixtures but decreases rapidly in magnitude for increasing chain length of the n-alkanol. The results were used to estimate the excess partial molar volumes of the components.  相似文献   

4.
Measurements of volumetric heat capacities at constant pressure, Cp/V (V being the molar volume), at 298.15 K, of the binary liquid mixtures 1,1,1-trichloroethane + oxolane, +1,3-dioxolane, +oxane, +1,3-dioxane, and +1,4-dioxane were carried out in a Picker-type flow microcalorimeter. Molar heat capacities at constant pressure. Cp, and molar excess heat capacities, CEp, were calculated from these results as a function of the mole fraction. CEp values for these systems are positive and the magnitude depends on the size of the cycle and on the relative position of the oxygen atoms in the cyclic diethers. The precision and accuracy for CEp are estimated as better than 2%. Molar excess volumes, VE, for the same systems, at 298.15 K, have been determined from density measurements with a high-precision digital flow densimeter. The experimental results of VE and CEp, are interpreted in terms of molecular interactions.  相似文献   

5.
《Fluid Phase Equilibria》1998,152(2):243-254
Molar excess enthalpies, HE, at 303.15 K and atmospheric pressure, of n-propyl-, n-butyl-, n-pentyl-, n-octyl- or n-decylamine+toluene, as well as the isothermal vapour–liquid equilibria, VLE, of n-butylamine+toluene and of n-butylamine+benzene at 298.15 K have been determined. These experimental results, along with the data available in the literature on molar excess Gibbs energies, GE, activity coefficients at infinite dilution, γi, and molar excess enthalpies, HE, for n-alkylamine+toluene mixtures are examined on the basis of the DISQUAC group contribution model. The modified UNIFAC is also used to describe the mixtures.  相似文献   

6.
This paper presents experimental data for the excess molar enthalpies HmEand excess molar volumes VmEat T =  298.15 K and atmospheric pressure for 21 binary mixtures consisting of one of three pentyl esters (ethanoate, propanoate, and pentanoate) and one of seven odd n -alkanes (from pentane to heptadecane). The results have shown the mixing of these mixtures to be endothermic, with HmEvarying uniformly with the n -alkane chain length. The variation of VmEwas also found to be uniform, with contraction effects observed for the mixtures that contained low molecular-weight hydrocarbons, and increasing with the pentyl ester chain length. Different group-contribution theories were used to calculate the excess properties for (an ester  +  an n -alkane). Comparison of the calculated and experimental results revealed that, in most cases, the differences increased with the molecular weight of the components. However, the differences for the calculated values of the excess volumes using the model of Nitta et al. decreased with n -alkane chain length but increased with ester chain length, the mean differences for the excess volumes being larger than 20 per cent.  相似文献   

7.
Calorimetric measurements of molar excess enthalpies, HE, at 298.15 K, of mixtures containing aromatic aldehydes of general formula C6H5(CH2)mCHO (with m = 0, 1 and 2) + n-hexane, n-heptane or benzene are reported, together with the values of HE at equimolar composition compared with the corresponding values of HE for the aromatic ketones in the same solvents. The experimental results clearly indicate that the intermolecular interactions between the carbonyl groups (CHO) are influenced by the intramolecular interactions between the carbonyl and phenyl groups, particularly for the mixtures containing benzaldehyde.  相似文献   

8.
The excess volumes of cyclopentane + n-hexane, + n-heptane, n-dodecane; cyclohexane + n-pentane; cycloheptane+ n-pentane, n-octane and n-dodecane have been measured at two temperatures. The results together with literature values reported for other systems of the type cycloalkane + an n-alkane have been discussed and the trends highlighted.VEm and HEm results from our work and from the literature, for the systems cyclopentane or cyclohexane + an n-alkane, have been analysed in the light of the statistical theory of Flory.  相似文献   

9.
Molar excess heat capacities at constant pressure, CEp, of binary liquid mixtures chloroform + oxolane, chloroform + 1,3-dioxolane, chloroform + oxane, and chloroform + 1,4-dioxane have been determined at 298.15 K from measurements of volumetric heat capacities in a Picker flow microcalorimeter. A precision of ±0.04 J K?1 mole? was achieved by using the stepwise procedure. Experimental molar excess heat capacities are compared with values derived from HE results at different temperatures. Excess molar volumes, VE, for the same systems at 298.15 K have been determined by measuring the density of the pure liquids and solutions with a high-precision digital flow densimeter.  相似文献   

10.
《Fluid Phase Equilibria》2004,216(2):245-256
Excess molar volumes vE and isobaric heat capacities CpE at 298.15 K were measured for 11 mixtures of diisopropyl ether (DIPE)+alcohol (from methanol to 1-undecanol), DIPE with n-heptane and 2,4-dimethylpentane with 1-octanol. Moreover the excess molar enthalpy hE of DIPE with n-heptane at the same temperature was also measured in order to obtain the self-association parameters of the symmetrical extended real associated solution (SERAS) model for DIPE. Parameters of the SERAS model corresponding to the interaction of DIPE with each alcohol were obtained by fitting vE data reported here and hE data taken from a previous work. The results obtained are compared with those from the literature obtained by using the ERAS model in the traditional way for several of the studied mixtures. CpE curves are qualitatively explained in terms of the SERAS model.  相似文献   

11.
12.
Abstract

Excess molar volumes at 298.15 K of the ternary mixtures (propyl ethanoate + n-heptane + n-decane), (propyl propanoate + n-heptane + n-decane) and (propyl butanoate + n-heptane + n-decane) were determined using a DMA 60/602 Anton Paar densimeter. All the experimental values were compared with the results obtained with empirical expressions for estimating ternary properties from binary data and with the Nitta-Chao group-contribution model. For these ternary mixtures the same behaviour that had been observed in ester + n-alkane binary systems was found: excess volumes decrease when the ester length increases.  相似文献   

13.
《Fluid Phase Equilibria》2004,224(2):169-183
Systems of N,N di(n-alkylamides) (hereafter, N,N-dialkylamides) with alkane, benzene, toluene, 1-alkanol or 1-alkyne have been investigated in the framework of the DISQUAC model. The corresponding interaction parameters are reported. They change regularly with the molecular structure of the mixture components. This variation is similar to those encountered when treating other systems in terms of DISQUAC. The model describes consistently a whole set of thermodynamic properties: liquid–liquid equilibria (LLE), vapor–liquid equilibria (VLE), solid–liquid equilibria (SLE), molar excess Gibbs energies (GE), molar excess enthalpies (HE), molar excess heat capacities at constant pressure (CPE), partial molar excess properties at infinite dilution, enthalpies and heat capacities. The model also provides good results for the Kirkwood–Buff integrals and for the linear coefficients of preferential solvation. For ternary systems, DISQUAC predictions on VLE and HE, obtained using binary parameters only, are in good agreement with the experimental data. A short comparison between DISQUAC and Dortmund UNIFAC results is shown. DISQUAC improves UNIFAC results on HE and CPE, magnitudes which strongly depend on the molecular structure. The investigated mixtures behave similarly to those characterized by thermodynamic properties which arise from dipolar interactions. Association/solvation effects do not play, as a whole, an important role in the studied systems. This may explain that the ERAS model fails when representing the thermodynamic properties of dimethylformamide + 1-alkanol mixtures.  相似文献   

14.
The experimental data of excess enthalpies for β-carotene/n-alkane+n-alkane/AOT/water systems at 298.15 K are reported. The HE dependence on AOT (sodium bis(2-ethylhexyl) sulfosuccinate) concentration and hydrocarbon chain length was investigated. The excess enthalpy was measured using the flow microcalorimeter UNIPAN type 600.  相似文献   

15.
Densities have been measured as a function of composition for ternary-pseudobinary mixtures of [(benzene + toluene or methylcyclohexane) + (cyclohexane + toluene or methylcyclohexane)] by means of a vibrating-tube densimeter at atmospheric pressure and the temperature 298.15 K. The excess molar volumes, VmE, were calculated from the densities and correlated using the Redlich–Kister equation to estimate the coefficients and standard errors. The experimental and calculated quantities are used to discuss the mixing behavior of the components. The results show the third component, toluene and methylcyclohexane, influences the interaction between benzene and cyclohexane.  相似文献   

16.
Molar excess enthalpies HE have been measured as a function of mole fraction at atmospheric pressure and 298.15 K for the binary liquid mixtures of ethanal, propanal, butanal and pentanal + benzene or + tetrachloromethane. The results show that the excess enthalpies decrease with increasing the n-alkanal chain length, with negative values for n-pentanal.  相似文献   

17.
Molar excess volumes, VE, for pyridine (A) + α-picoline (B), + β-picoline (B) and + γ-picoline (B) and benzene (A) + toluene (B), + o-xylene (B) and + p-xylene (B) and carbon tetrachloride (A) + n-heptane (B) have been measured dilatometrically as a function of temperature and composition and have been utilized to study B—B and B—B—B interactions in the presence of A via the Mayer—McMillan approach. A model has also been presented to account for these B—B and B—B—B interactions. The VE data at 308.15 K have also been analysed in terms of the “graph theoretical” approach which describes the VE data well for all these mixtures at 308.15 K. The “graph theoretical” approach has further been extended to successfully evaluate VE data for a mixture at any temperature, T2, when the VE data at T1 are known.  相似文献   

18.
《Fluid Phase Equilibria》2002,202(1):13-27
Excess molar volumes, VmE, at 298.15 K and atmospheric pressure over the entire composition range for binary mixtures of 2-butanone with di-n-butyl ether and 2-pentanone and 3-pentanone with di-n-butyl ether and 2,5-dioxahexane, 2-heptanone and 4-heptanone with di-n-butyl ether, 2,5-dioxahexane and 3,6,9-trioxaundecane are reported from densities measured with a vibrating-tube densimeter. All the excess volumes present strong contractions when compared to those of n-alkanone+n-alkane systems.Molar excess enthalpies HmE and VmE of the considered mixtures vary similarly. This may be attributed to interactional effects which prevail over structural effects.Flory’s theory has been applied to the systems under study. As expected, results for HmE are better when the difference in polarity of the components of the mixture decreases. VmE is often poorly represented.  相似文献   

19.
Abstract

Excess molar volumes vE have been measured for the binary liquid mixtures of propyl ethanoate with five n-alkanes (n-hexane, n-heptane, n-octane, n-nonane and n-decane) at 298.15 and 308.15 K, using an Anton Paar densimeter. All the mixtures studied present positive vE values that increase with the length of the chain of the alkane and with the temperature. The experimental results are compared with the predictions of the Nitta—Chao model.  相似文献   

20.
Excess molar enthalpies HmE and excess molar volumes VmE have been measured for xC3H7NO2 + (1 ? x)c-C6H12 at 298.15 and 318.15 K; +(1 ? x)CCl4 at 298.15 and 318.15 K; +(1 ? x)C6H6 at 298.15 and 318.15 K; +(1 ? x)C6H14 (VmE only) at 298.15 K; +(1 ? x)p-C6H4(CH3)2 at 298.15 K; and for xCH3CH(NO2)CH3 + (1 ? x)c-C6H12 at 298.15 and 318.15 K; +(1 ? x)CCl4 at 298.15 and 318.15 K; +(1 ? x)C6H6 at 298.15 K; +(1 ? x)C6H14 at 298.15 K; +(1 ? x)(CH3)2CHCH(CH3)2 for HmE at 318.15 K and for VmE at 298.15 K; and +(1 ? x)C16H34 at 298.15 K. The HmE′s were determined with an isothermal dilution calorimeter and the VmE′s with a continuous-dilution dilatometer. Particular attention was paid to the region dilute in nitroalkane. In general HmE is large and positive for (a nitropropane + an alkane), less positive for (a nitropropane + tetrachloromethane), and small for (a nitropropane + benzene) and for (a nitropropane + 1,4-dimethylbenzene). The mixture with hexadecane shows phase separation. VmE is large and positive for (1-nitropropane + cyclohexane), less positive for (1-nitropropane + hexane), and S-shaped for (1-nitropropane + tetrachloromethane) with negative values in the 1-nitropropane-rich region. For (1-nitropropane + benzene) and for (1-nitropropane + 1,4-dimethylbenzene) VmE is negative. For mixtures with 2-nitropropane the results are similar except that for benzene VmE is S-shaped with positive values in the 2-nitropropane-rich region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号