首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

2.
Reactions of copper(I) halides with a series of thiosemicarbazones, namely, benzaldehyde thiosemicarbazone (R1R2CN–NH–C(S)–NH2, R1 = Ph, R2 = H; Hbtsc), 2-benzoylpyridine thiosemicarbazone (R1 = Ph, R2 = py; Hbpytsc), and acetone thiosemicarbazone (R1 = R2 = Me; Hactsc), in the presence of PPh3 has formed dimeric complexes, viz. sulfur bridged [Cu2(μ-S-Hbtsc)2Br2(PPh3)2]·2H2O (1), iodo-bridged [Cu2(μ-I)21-S-Hbtsc)2(PPh3)2] (2), and heterobridged [Cu23-S,N3-Hactsc)(η1-Br)(μ-Br)(PPh3)2] (3), as well as mononuclear complexes [CuX(η1-S-Hbpytsc)(PPh3)2]·CH3CN (X = Br, 4; Cl, 5). Complexes 1, 2, 4 and 5 involve thiosemicarbazone ligands in η1-S bonding mode while in compound 3, ligand acts in N3, S-chelation-cum-S-bridging mode (μ3-S,N3 mode). The intermolecular interactions such as, N2H?X, HN1H?X (X = S, Br, Cl), CH?π interactions lead to 2D networks. All the complexes have been characterized with the help of elemental analyses, IR, 1H, and 31P NMR spectroscopy, and single crystal X-ray crystallography. The role of a solvent in alteration of nuclearity and bonding modes of complexes has been highlighted.  相似文献   

3.
Reactions of 1,3-bis(pyridin-2-ylmethyl)-1H-imidazol-3-ium hexafluorophosphate, ([HL1](PF6), L1 = 1,3-bis(pyridin-2-ylmethyl)imidazolylidene) and 1,3-bis(pyridin-2-ylmethyl)-1H-benzimidazol-3-ium hexafluorophosphate ([HL2](PF6), L2 = 1,3-bis(pyridin-2-ylmethyl)benzoimidazolylidene) with cuprous oxide in acetonitrile readily yielded trinuclear complexes [Cu3(L1)3(PF6)3] (1) and [Cu3(L2)3(PF6)3] (2). Treatment of 1 with Ni(PPh3)2Cl2 and Pd(cod)Cl2 gave [Ni(L1)Cl](PF6) (3) and [Pd(L1)Cl](PF6) (4), respectively, due to transmetalation. [Ni(L1)2](PF6)2 (5) was obtained from the reaction of [Cu3(L1)3(PF6)3] and Raney nickel in acetonitrile. All these complexes have been fully characterized. Both 1 and 2 consist of a triangular Cu3 core with each Cu–Cu bond capped by an imidazolylidene group. Each imidazolylidene acts as a bridging ligand in a μ2 mode and is bonded equally to two Cu(I) ions. The pincer nickel and palladium complexes are square-planar and contain a tridentate NCN ligand. Complexes 3 and 4 are efficient catalyst precursors for Kumada–Corriu and Suzuki–Miyaura coupling reactions of aryl halides with organometallic reagents.  相似文献   

4.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

5.
The extraction of Cu2+ ions from sulfate solutions across a hollow-fiber membrane containing LIX64N carriers dissolved in kerosene has been studied, in which Cu(II) was then back-extracted to a stripping-phase containing HCl. Experiments were conducted as a function of the initial feed concentration of Cu2+ (1–10 mol/m3), feed pH (2–6), the carrier concentration (0.1–0.4 mol/dm3), and stripping acidity (0.4–4 mol/dm3). A mass-transfer model was developed to predict the extent of Cu2+ extraction from aqueous feed in hollow-fiber contactors. The calculated time profiles of Cu2+ concentrations were in reasonable agreement with the experimental data (average standard deviation 9% in both extraction and back-extraction modules). The rate-controlling step(s) of such dispersion-free extraction processes were identified. It was shown that the extraction was governed by combined interfacial reaction and aqueous diffusion under the ranges studied, whereas the back-extraction was limited by combined membrane diffusion and aqueous diffusion.  相似文献   

6.
The newly prepared homo-bimetallic complexes [M2(imda)2(H2O)4], [M2(imda)2(Bipy)2] (M = Co, Ni or Cu) and [Fe2(imda)2(H2O)3Cl] (H2imda = iminodiacetic acid and Bipy = 2,2′-bipyridine) have been studied employing IR, FAB-mass, 1H and 13C NMR, EPR and ligand field spectra, which indicated a high-spin state of metal ion with hexa-coordinate environment. 57Fe Mössbauer data of the homo-bimetallic complex [Fe2(imda)2(H2O)3Cl] confirm a high-spin configuration with Fe (±3/2  1/2) nuclear transitions and the presence of Kramer's double degeneracy. At RT, the spin–spin interactions of the neighbouring nuclei (Fe3+–Fe3+ = S5/2–S5/2) are anti-ferromagnetically coupled. However, at LNT, the complex acquires a mixed-valent [FeIII–FeII] composition corroborated from the X-band EPR data. CV studies indicated the presence of quasi-reversible redox CuII/I, CuII/III, FeIII/II, FeIII/I and FeII/I couples.  相似文献   

7.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

8.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

9.
Blue copper proteins play a central role in various enzymatic anabolic/catabolic pathways in living cells by virtue of the integrated metal ions. These ions may exist in variable oxidation states, with suitable reduction potentials and fast electron-transfer rates which in turn is a manifestation of their unusual geometry and co-ordination. We report the electrochemical and spectral characterization of three novel complexes of copper (II) with N2S type tridentate chelating agent 2,2′-dithiodianiline (dta), having structural similarities to the active site of Type I copper proteins. High positive redox potentials in the range of 0.5–0.6 V vs Ag/AgCl electrode of the complexes and the absorption maxima at ~550 nm, with high extinction coefficients, correspond well with typical blue copper proteins. The IR and EPR studies support the assigned pseudo tetrahedral structures to the complexes. The diffusion coefficient and rate constant for heterogeneous charge transfer for Cu2+/Cu+ coordinated in a potentially bio-mimetic Type I site is reported.  相似文献   

10.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

11.
《Polyhedron》2005,24(16-17):2431-2436
We investigated electron spin densities of pyrazolato-bridged complexes [Cu(pz)2]n (1) and [Cu2(pz)2(NO3)(H2O)(phen)2]NO3 (2) (Hpz = pyrazole, phen = 1,10-phenanthroline) using solid-state high-resolution NMR to elucidate the magnetic interaction paths with the help of molecular orbital theory. We prepared deuterated analogue of these complexes, 1-d6 and 2-d6, to measure temperature dependence of 2H and 13C NMR shifts between 190 and 350 K. The hyperfine coupling constants (HFCCs) and electron spin densities were determined from the slopes of the shifts as a function of the magnetic susceptibilities. The derived spin densities were all positive, which indicates the dominant magnetic interaction paths of these complexes are not π but σ orbitals of the pyrazolate ligand. The NMR results reasonably agreed with those of density functional theory (DFT) calculations for molecular models of 1 and 2.  相似文献   

12.
New luminescent mononuclear and dinuclear copper(II) (S = 1/2) complexes [Cu(HL)(H2O)2](ClO4)2 (1a) and [Cu2(HL)2(μ-SO4)2]·2H2O (1b) were synthesized with the acyclic tridentate pyridine-2-carboxaldehyde-2-pyridylhydrazone ligand, HL (1). Interestingly, the mononuclear complex 1a can be converted into the disulfate bridged dimeric copper(II) complex 1b by passing freshly prepared SO2 through the basic medium. On excitation at 290 nm, the ligand fluoresces at 364 nm due to an intraligand 1(π–π1) transition. Upon complexation with copper(II), the emission peak is slightly blue shifted (356 nm, F/F0 0.76 for 1a and 354 nm, F/F0 0.89 for 1b) with a little quenching in the emission intensity. The association constants (Kass (5.06 ± 0.004) × 104 for 1a and Kass (5.46 ± 0.006) × 104 for 1b at 298 K) and the thermodynamic parameters have been determined by UV–Vis spectroscopy. The molecular structure of the complex 1b (Cu?Cu 4.456 Å) has been determined by single crystal X-ray diffraction studies. The complex 1b exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 6.3 × 104 M?1 and Ksv (Stern–Volmer quenching constant) 2.93 values.  相似文献   

13.
A new β-cyclodextrin (β-CD) inclusion compound Zn(2H1NA)2·2β-CD (2H1NA = 2-hydroxy-1-naphthoic acid) was prepared. The structure was characterized by 1H NMR, IR, the fluorescence spectra, thermogravimetric analysis (TG–DTA) and elementary analysis. Meanwhile, the mechanism of the formation of the supramolecular system (2H1NA:Zn(II):β-CD) was studied and discussed by spectrofluorimetry. The results showed that the naphthalene rings of the Zn(II) aromatic complex Zn(2H1NA)2 were encapsulated within the β-CD's cavity to form a 2:1 stoichiometry host–guest compound. The inclusion constant calculated was 1.27 × 104 (L/mol)2. A spectrofluorimetric method for the determination of 2H1NA in bulk aqueous solution in the presence of β-CD was developed based on the great enhancement of the fluorescence intensity of 2H1NA. The linear relationship was obtained in the range of 9.00 × 10?7 to 2.50 × 10?5 mol/L and the detection limit was 8.00 × 10?7 mol/L. The proposed method was successfully applied to determine 2H1NA in waste water with recoveries of 97–104%.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(23):3908-3912
Two β-(alkyl)-β-hydroxy-α-amino acids [alkyl = But, BnO–(CH2)3–] have been synthesized by a sequence based on Sharpless asymmetric dihydroxylation. The key sulfate intermediates were prepared from enantiomerically enriched diols by direct treatment with sulfuryl chloride. The scope and the appropriate conditions for sulfate formation have also been studied.  相似文献   

15.
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and α-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also, Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly, Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion [Ag2(L–H)]+ where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I).  相似文献   

16.
Cu3[W(CN)8]2(pyrimidine)2(3-cyanopyridine)2 · 4H2O, a cyanide-bridged copper(II) octacyanotungstate(V) with two types of organic ligands (pyrimidine and 3-cyanopyridine), is prepared. In this compound, the coordination geometry of W is an 8-coordinated bicapped trigonal prism where five CN groups of [W(CN)8] are bridged to five Cu ions, and the remaining three CN groups are free. The coordination geometries of the three types of Cu ions (Cu1, Cu2, and Cu3) are 6-coordinated pseudo-octahedron. The cyano-bridged-Cu2–W–Cu3-layer is linked by a Cu1 pillar unit, and a cavity along the a axis, which is occupied by 3-cyanopyridine molecules and zeolitic water molecules, exists. The present compound shows ferrimagnetism with a Currie temperature of 7 K, a saturation magnetization of 2.9 μB, and a coercive field of 7 Oe at 2 K.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(7):766-775
A series of mononuclear Cu(I)–halide complexes, [CuX(PPh3)2(L)] (X = Cl, Br, I; PPh3 = triphenylphosphine; L = pyridine (py), isoquinoline (iq), 1,6-naphthyridine (nap)), were synthesized. The emission color of [CuX(PPh3)2(L)] varies from blue to red by changing the L ligands and the halide ions, and all the complexes exhibit high emission quantum yields (0.16–0.99) in the crystals. The emission studies revealed that the emissive states of [CuX(PPh3)2(L)] differ depending on the L ligand. Complexes [CuX(PPh3)2(py)] and [CuX(PPh3)2(nap)] mainly emit from the singlet metal-to-ligand charge transfer mixed with the halide-to-ligand charge transfer (1(M + X)LCT) state at room temperature. In contrast, emissions from [CuX(PPh3)2(iq)] at room temperature originate from both 3(M + X)LCT and 3ππ* states. These results indicate that N-heteroaromatic ligands play an important role in the emission properties of mononuclear Cu(I)–halide complexes.  相似文献   

18.
Cu2+–ZnO/cetylpyridinium–montmorillonite (Cu2+–ZnO/CP–MMT) complexes were prepared using montmorillonite (MMT), Cu2+, Zn2+, and cetylpyridinium (CP). The goal was to assess comparatively the adsorption properties of Cu2+–ZnO/CP–MMT in vitro using pathogenic Escherichia coli. The results showed that Cu2+–ZnO/CP–MMT adsorbed significantly (P < 0.05) more E. coli compared with the parent clay. The adsorption process of bacterial cells occurring on the modified MMT surface reached equilibrium after 90 min. The percentages of E. coli adsorbed onto the surfaces of Cu2+–ZnO/CP–MMT and MMT in adsorption equilibrium were 84.66% and 47.01%, respectively. Adsorption data from the bacteria-clay systems followed the Langmuir and Freundlich isotherms, but not the BET isotherm. Adsorption of E. coli in acidic medium was higher than in alkaline medium. The extent of bacteria adsorption onto the modified MMT increased with decreasing ionic strength, and with increasing temperature. The processes of E. coli adsorption onto the tested adsorbents were endothermic and spontaneous at the experimental temperature. The mechanism of adsorption of bacteria on Cu2+–ZnO/CP–MMT may involve enhanced hydrophobicity and the reversal of surface charge from negative to positive.  相似文献   

19.
This paper reports the synthesis of a series of methylpyruvate thiosemicarbazone derivatives containing, on the terminal nitrogen, substituents of different nature and size and namely, ethyl, phenyl and methylphenyl. These ligands were reacted with bis(triphenylphosphine)copper(I) nitrate and acetate to produce the respective complexes: [Cu(PPh3)2(Et-Hmpt)]2(NO3)2 (1), [Cu(PPh3)2(Ph-Hmpt)]NO3 (2), [Cu(PPh3)2(MePh-Hmpt)]NO3 (3), [Cu2(O2CCH3)(Et-pt)(PPh3)2] · H2O (4), [Cu(Ph-mpt)(PPh3)] (5) and [Cu2(MePh-mpt)2(PPh3)2] (6). All of them were characterized by elemental analysis, IR, 1H NMR, EPR spectroscopy and, for compounds 1, 2, 4, and 6, by X-ray crystallography. The characterization revealed that the coordinating behaviour of the ligands is influenced by a series of factors, predominant among which is the hard soft nature of the atoms involved in the interactions with the metal centre. The complexes obtained from the nitrate copper(I) salt are formed by cationic molecules with a nitrate as a counterion, while those derived from the acetate salt present deprotonated ligands and a few unexpected features. In particular, one of the compounds (4) is a mixed valence dinuclear complex with an acetate oxygen and the thiosemicarbazone sulfur acting as bridging between the two Cu(I) and Cu(II) ions. Another one (6) presents instead a Cu(I)–Cu(I) sulfur bridged binuclear cluster.  相似文献   

20.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号