首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The recently determined accurate values of the nuclear quadrupole coupling constant of the Sb nucleus in SbN, SbP, SbF, and SbCl and the calculated electric-field gradients at Sb in these molecules are used to obtain the nuclear quadrupole moment of 121Sb and 123Sb. The calculation of the electric-field gradient has been carried out by using the infinite-order two-component relativistic method in the scalar approximation. The accompanying change of picture of the electric-field gradient operator has been accounted for by employing the shifted nucleus model of nuclear quadrupoles. The electron correlation effects are calculated at the level of the coupled cluster approximation. The present calculations give the "molecular" value of the nuclear quadrupole moment of 121Sb equal to -556+/-24 mb which is considerably different from the old "recommended" value of -360+/-40 mb and also differs from the recent "solid-state" result (-669+/-15 mb). The validation of the present data is comprehensively discussed.  相似文献   

2.
The effects of ion force field polarizability on the interfacial electrostatic properties of approximately 1 M aqueous solutions of NaCl, CsCl, and NaI are investigated using molecular dynamics simulations employing both nonpolarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, "permanent" and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and z z components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor which mimics a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase nonmonotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the nonpolarizable salts yield values 20-60 mV more positive than pure water and increase by an additional 30-100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by negative contributions from all other potential sources. Water quadrupole components modulated by the water density contribute significantly to the observed interfacial potential increments and almost entirely explain observed differences in the interfacial potentials for the two chloride salts. By lumping all remaining nonquadrupole interfacial potential contributions into a single "effective" dipole potential, we observe that the ratio of quadrupole to "effective" dipole contributions range from 2:1 in CsCl to 1:1.5 in NaI, suggesting that both contributions are comparably important in determining the interfacial potential increments. We also find that oscillations in the quadrupole potential in the double layer region are opposite in sign and partially cancel those of the "effective" dipole potential.  相似文献   

3.
The role of bond flexibility on the dielectric constant of water is investigated via molecular dynamics simulations using a flexible intermolecular potential SPC/Fw [Y. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 128, 024503 (2006)]. Dielectric constants and densities are reported for the liquid phase at temperatures of 298.15 K and 473.15 K and the supercritical phase at 673.15 K for pressures between 0.1 MPa and 200 MPa. Comparison with both experimental data and other rigid bond intermolecular potentials indicates that introducing bond flexibility significantly improves the prediction of both dielectric constants and pressure-temperature-density behavior. In some cases, the predicted densities and dielectric constants almost exactly coincide with experimental data. The results are analyzed in terms of dipole moments, quadrupole moments, and equilibrium bond angles and lengths. It appears that bond flexibility allows the molecular dipole and quadrupole moment to change with the thermodynamic state point, and thereby mimic the change of the intermolecular interactions in response to the local environment.  相似文献   

4.
5.
It is shown in this paper that from the study of the induced infrared absorption spectra of homonuclear diatomic molecules solvated as impurities in a molecular quantum solid, it is possible to extract information about the rovibrational matrix elements of the multipole moments and polarizability of the embedded molecule. Theoretical expressions are derived for the integrated absorption coefficients of various multipole-field-induced double transitions involving guest-host pairs in a solid para-H(2) matrix. The intensities of some of the quadrupole moment induced transitions involving the N(2)-para-H(2) pair have been measured. From a comparison of the experimental and theoretical intensities, rovibrational matrix elements of the quadrupole moment of N(2) are determined in its ground vibrational state.  相似文献   

6.
The electronic properties of the benzene molecule, for example its quadrupole moment and the electric field gradients (EFG's) at the H nuclei, are of fundamental importance in theoretical and experimental chemistry. With this in mind, single-crystal X-ray diffraction data on C(6)H(6) were collected with a charge-coupled device detector at T approximately 110 K. As accurate modelling of the thermal motion in the crystal was regarded as vital, especially for the hydrogen atoms, anisotropic-displacement parameters (ADP's) for the C and H atoms in C(6)H(6) were derived in a straightforward fashion from analysis of the temperature dependence of ADP's for the C and D atoms in C(6)D(6) at 15 K and 123 K obtained by neutron diffraction. Agreement between C-atom ADP's derived from thermal-motion analysis of neutron data and those obtained from multipole refinement by using the X-ray data is extraordinarily good; this gives confidence in the modelling of vibrational motion for the H atoms. The molecular quadrupole moment derived from the total charge density of the molecule in the crystal is (-29.7+/-2.4)x10(-40) C m(2), in excellent agreement with measurements made in the gas phase and in solution. The average deuterium nuclear quadrupole coupling constant (DQCC) derived from EFG tensors at H atoms is 182+/-17 kHz, also in excellent agreement with independent measurements. The strategy employed in this work may be of more general applicability for future accurate electron density studies.  相似文献   

7.
8.
We present a molecular dynamics simulation study in which we determined the melting point of ice I(h) for the polarizable SWM4-NDP water model (Lamoureux et al., Chem. Phys. Lett., 2006, 418, 245-249) and compared the performance of several popular water force fields, both polarizable and nonpolarizable, in terms of melting temperature, stability and orientational structuring of ice. The simulations yield the melting temperature of SWM4-NDP ice as low as T(m) = 185 ± 10 K, despite the quadrupole moment of a SWM4-NDP water molecule being close to the experimental gas phase value. The results thus show that the dependence of T(m) on the molecular quadrupole, observed for the three- and four-site water models, is generally lost if polarization is explicitly included. The study also shows that adding polarizability to a planar three-charge water model increases orientational disorder in hexagonal ice. In addition, analysis of the tetrahedral order in bulk ice reveals a correlation between the pre-existing degree of orientational disorder in ice simulated using different polarizable and nonpolarizable models and the melting temperature of the models. Our findings thus suggest some new considerations regarding the role of polarization forces in a crystalline solid that may guide future development of reliable polarizable water models for ice.  相似文献   

9.
The proton magnetic resonance spectra for ferrocene derivatives have been investigated in the solid state at a frequency of 27.5 MHz and at temperatures within the range 4.2–300 K. Evidence for re-orientation in various substituent groups and cyclopentadienyl rings has been deduced on the basis of the temperature dependence of the second moment of the PMR lines. The experimentally observed decrease in the second moment has been compared with the calculated contributions of different molecular groups to the second moment thus enabling an identification of these groups. In computing the second moment, account has been taken of both intra- and intermolecular dipole-dipole interactions. It is shown that the introduction of substituents into some ferrocene rings affects the magnitude of the re-orientation energy for both the substituted and unsubstituted rings. The change of the re-orientation energy of the substituted and unsubstituted rings in substituted ferrocenes with the structure and electronic properties of the substituents is discussed.  相似文献   

10.
Elegant expressions are derived for the computation of dipole and quadrupole moments of molecules using the electrostatic potential and electric field evaluated on an oriented molecular surface. These expressions are implemented for Hirshfeld surfaces, applied to various molecular crystals, and compared with the results from the quantum theory of atoms in molecules. The effect of intermolecular interactions is also explored by examining the differences between electrostatic moments derived from a periodic Hartree-Fock electron density and an electron density resulting from a superposition of noninteracting molecules. The enhancement of the dipole moment for hydrogen bonded molecular crystals is typically 30%-40% and shown to be largely independent of the partitioning scheme. Dipole moments calculated from Hirshfeld surfaces systematically underestimate those from zero-flux surfaces, a result attributed to the translation of the Hirshfeld surface relative to the zero-flux surfaces for these molecules. For acetylene and benzene, the differences between a crystal calculation and the sum of noninteracting molecules are small, and both partitioning schemes yield quadrupole and second moment results in close agreement.  相似文献   

11.
Based on the phase change theory, a novel tetrahydroxy compound (THCD) was designed and prepared. Depending on the spatial structure of the tetrahydroxy compound, a form-stable thermoplastic polyurethane solid–solid phase change material (TPUPCM) was synthesized via employing PEG as soft segments, while multi-benzene ring structure made by 4,4′-diphenylmethane diisocyanate and tetrahydroxy compound as hard segments. The composition and structure of THCD and TPUPCM, the TPUPCM’s the weight average molecular weight and number average molecular weight, dissolving and melting abilities, phase change behaviors, thermal performances and crystalline morphology were investigated by Fourier transform infrared spectrometer, 1H nuclear magnetic resonance spectrometer, multiangle laser light scattering apparatus, differential scanning calorimentry, dynamic mechanical thermal analysis, thermogravimetry analysis system, wide-angle X-ray diffraction, polarizing optical microscopy. The results show that the solid–solid phase change material owns excellent phase change properties and a broad processing temperature range. The heating cycle phase change enthalpy is 137.4 J/g, and the cooling cycle phase change enthalpy is 127.6 J/g. The started decomposition temperature and the maximum decomposition temperature are at 323.5 and 396.2 °C, respectively. Furthermore, the solid–solid phase change material is dissolvable, meltable and can be processed directly, and has great potential applications in thermal energy storage.  相似文献   

12.
Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical∕molecular mechanical (QM∕MM) calculations at the MP2∕aug-cc-pVQZ level on a B3LYP∕aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM∕MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM∕MM multipoles is much closer than that from the site models to the potential from the QM∕MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment.  相似文献   

13.
A butterfly‐like phosphorescent platinum(II) binuclear complex can undergo a molecular structure change in which the Pt–Pt distance shortens upon photoexcitation, which leads to the formation of two distinct excited states and dual emission in the steady state, that is, greenish‐blue emission from the high‐energy excited state at the long Pt–Pt distance and red emission from the low‐energy excited state at the short Pt–Pt distance. This photoinduced molecular structure change has a strong dependence on the molecule’s surrounding environment, allowing its application as self‐referenced luminescent sensor for solid–liquid phase change, viscosity, and temperature, with greenish‐blue emission in solid matrix and rising red emission in molten liquid phase. With proper control of the surrounding media to manipulate the structural change and photophysical properties, a broad white emission can be achieved from this molecular butterfly.  相似文献   

14.
Wide-line PMR studies on solid p-toluidine have been made in the temperature range 77–318 K at 7.5 MHz. Analysis of second moment data suggests a rigid and non-rotating state of the crystal lattice at 77 K. The molecular and crystal structure is confirmed. The second moment gradually decreases up to 240 K (a fall of 2.8 G2) which is indicative of quantum mechanical tunnelling of methyl protons. An observed abrupt fall in p.s.m. beyond 240 K is followed by a phase transition and is attributed to methyl and amino group reorientation upto the melting point. The potential barrier to the reorientation is found to be approximately 8.88 kcal mol?1 in the solid phase.  相似文献   

15.
以刚性的二醋酸纤维素 (CDA)链为骨架 ,接枝上聚乙二醇 (PEG)柔性链段 ,可得到一种具有固固相变性能的网状储能材料 .利用该材料的PEG支链从结晶态到无定形态间的相转变 ,可以实现储能和释能的目的 .具体研究了PEG的百分含量及PEG的分子量对材料储能性能的影响 .研究结果表明 ,通过改变PEG的百分含量与PEG的分子量 ,可以得到不同相变焓和不同相变温度的材料  相似文献   

16.
To estimate accurately the density of water over a wide range of temperatures with a density maximum at 4?°C is one of the most stringent tests of molecular models. The shape of the curve influences the ability to describe critical properties and to predict the freezing temperature. While it was demonstrated that with a proper parameter fit nonpolarizable models can approximate this behavior accurately, it is much more difficult to do this for polarizable models. We provide a short overview of ρ-T diagrams for existing models, then we give an explanation of this difficulty. We present a version of the BK model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010); and ibid. 135, 234110 (2011)] which is capable to predict the density of water over a wide range of temperature. The BK model uses the charge-on-spring method with three Gaussian charges. Since the experimental dipole moment and the geometry is fixed, and the quadrupole moment is approximated by a least mean square procedure, parameters of the repulsion and dispersive attraction forces remained as free tools to match experimental properties. Relying on a simplified but plausible justification, the new version of the model uses repulsion and attraction as functions of the induced dipole moment of the molecule. The repulsive force increases, while the attractive force decreases with the size of the molecular dipole moment. At the same time dipole moment dependent dispersion forces are taking part in the polarization of the molecule. This scheme iterates well and, in addition to a reasonable density-temperature function, creates dipole distributions with accurate estimation of the dielectric constant of the liquid.  相似文献   

17.
The 2H-N.M.R. spectra of mixtures of the non-mesogenic compound 4-cyano-4'-methylbiphenyl (1CB) and the nematic liquid crystal 4-cyano-4'-n-pentylbiphenyl (5CB) are measured as a function of concentration and temperature. Concentrations of up to 25 mol% 1CB have no effect on the N.M.R. spectrum and therefore on the orientational order of 5CB at a given reduced temperature. The order matrix of the 1CB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1CB is obtained from the analysis.  相似文献   

18.
The effect of intermolecular hydrogen bonding in the solid state on the molecular structures of imidazole and 1,2,4-triazole has been studied by SCF ab initio molecular orbital calculations at the HF/6-31G* level. The crystals of these species contain endless chains of molecules, connected by unusually strong N-H N hydrogen bonds. Our simulation of the crystal field, based on two simple models, unequivocally shows that hydrogen bond formation not only lengthens the N-H bond but also causes a concerted change in the length of two N-C bonds. The change indicates that the contribution of a polar canonical form to the structure of the molecule increases in going from the gaseous phase to the crystal. This provides a rationale for the strong intermolecular hydrogen bond occurring in the solid state. We have also optimized the geometry of the free molecules at the MP2/6-31G* level, to investigate the effect that correcting for electron correlation has on the equilibrium structure of these systems.  相似文献   

19.
A computational study of the ground- and excited-state properties of the mixed-valence complex [(NH 3) 5Ru (III)NCRu (II)(CN) 5] (-) is presented. Employing DFT and TDDFT calculations for the complex in the gas phase and in aqueous solution, we investigate the vibrational and electronic structure of the complex in the electronic ground state as well as the character of the electronically excited states. The relevance of the various excited states for the intervalence metal-metal charge-transfer process in the complex is analyzed based on the change of charge density, spin density, and dipole moment upon photoexcitation as well as by a Mulliken-Hush analysis. Furthermore, those intramolecular modes, which are important for the charge-transfer process, are identified and characterized.  相似文献   

20.
Host–guest complexes are of interest as promising nanodevices for molecular recognition and chemosensors. In this work, the structure and molecular dynamics of complexes of the nitroxyl radical TEMPO (I), as models of indicator and analyte, with cucurbituril CB[7] in solution and in the solid phase have been studied by ESR and DFT methods. The kinetic accessibility of the NO group of I for water-soluble reagents has been determined. By simulation of the ESR spectra of the complex, the rotational diffusion coefficients and the anisotropy of its rotation have been determined. To study the rotational mobility of the guest in the CB[7] cavity, solid solutions of I@CB[7] in the CB[7] matrix have been obtained. The ESR spectra indicate rapid jump-like rotation of I about an axis oriented along the normal to the CB[7] portals. The formation energy and the spatial structure of the complex have been calculated by the DFT method; a change in the spin density on the NO group with changing the orientation of I in the CB[7] cavity has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号