首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
王前许旭  戴立信 《中国化学》2006,24(12):1766-1772
Quasi-interpenetrating network of polyacrylamide (PAA) and polyvinylpyrrolidone (PVP) had been successfully used for single-base resolution of double-stranded DNA (0.76 for 123 bp/124 bp) and single-stranded DNA fragments (0.97 for 123 b/124 b) with UV detection. This quasi-IPN (interpenetrating network) sieving matrix showed low viscosity (23.5 mPa·s at 25 ℃) and decreased with increasing temperature. This polymer also exhibited dynamically coating capacity and could be used in the uncoated capillary. The effects of temperature and electric field strength on the DNA separation of quasi-IPN matrix were also investigated and found that the temperature and electric field strength could markedly affected the mobility behavior of DNA fragments. This polymer matrix has also applied to separate the bigger DNA fragments by capillary electrophoresis with UV detection. Under the denaturing conditions, this matrix separated the samples with last fragment of 1353 base in 40 rain, in which the doublet of 309/310 base was partial separated and the resolution was 0.88.  相似文献   

2.
Zhou P  Yu S  Liu Z  Hu J  Deng Y 《Journal of chromatography. A》2005,1083(1-2):173-178
A new separation matrix, consisting of polymer poly(N-isopropylacrylamide) (PNIPAM) and small molecule additive mannitol, was used for double-stranded (ds) DNA and plasmid DNA separation by capillary electrophoresis. The matrix had a low viscosity, which made it very easy to handle. The additive mannitol dramatically enhanced the sieving performance of PNIPAM in TBE buffer. The optimal mannitol concentration 6% in polymer solution, was determined with the consideration of both speed and resolution. A resolution of 0.95 was achieved on the separation of 271/281 bp in the phiX174/HaeIII digest by using 1.5% PNIPAM + 6% mannitol, while the supercoiled, linear and nicked conformers of lambda plasmid were separated in 1% PNIPAM + 6% mannitol, demonstrating the potential use of this new matrix for effective DNA separations. The dramatic impact of mannitol on sieving performance of PNIPAM solution was investigated. pH dependent self-coating ability of PNIPAM was revealed. The presence of mannitol in TBE buffer decreased the pH of the buffer, which led to more efficient self-coating ability of PNIPAM probable due to the formation of hydrogen bonds between PNIPAM molecules and silanol groups at the silica wall.  相似文献   

3.
D Liang  L Song  S Zhou  V S Zaitsev  B Chu 《Electrophoresis》1999,20(14):2856-2863
A new separation medium, poly(N-isopropylacrylamide)-g-poly(ethyleneoxide) (PNI-PAM-g-PEO) solution, used for double-stranded (ds) DNA separation by capillary electrophoresis (CE) is presented. This type of grafted copolymer has a good self-coating ability for quartz capillary tubing and a slightly temperature-dependent viscosity-adjustable property, making it easier to use. One bp resolution was achieved within 12.5 min by using 8% w/v PNIPAM-gPEO in 1 x TBE (Tris-borate-ethylenediaminetetraaceticacid) buffer with an effective column length of 10 cm and an applied electric field strength of 200 V/cm. The PNIPAM-g-PEO solutions had a high sieving ability for relatively small sized DNAs with the relative standard derivation for the first 10 runs being less than 0.9% by using the same polymer solution. With 8% w/v PNIPAM-g-PEO solution in a 1.5 cm column and 2400 V as the running voltage, phiX174/HaeIII digest could be clearly separated within 24 s.  相似文献   

4.
Wang Y  Liang D  Hao J  Fang D  Chu B 《Electrophoresis》2002,23(10):1460-1466
A noncross-linked interpenetrating polymer network (IPN), consisting of poly(N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP, weight-average molecular weight M(w) = 1 x 10(6) g/mol) was synthesized by polymerizing N,N-dimethylacrylamide (DMA) monomers directly in PVP buffer solution and tested as a separation medium for double-stranded (ds)DNA analysis without further purification. Due to the incompatibility of PVP and PDMA, a simple solution mixture could incur a microphase separation and showed poor performance on dsDNA separation. However, a dramatic improvement was achieved by the formation of an IPN. We attributed the high sieving ability of IPN as due to an increase in the number of entanglements by the more extended polymer chains. Apparent viscosity studies showed that the IPN had a much higher viscosity than the simple mixture containing the same amount of PDMA and PVP. In 1 x Tris-borate-EDTA (TBE) buffer, the concentration ratio of PDMA and PVP had a great effect on the DNA separation. At optimal conditions, the 22 fragments in pBR322/HaeIII DNA were successfully separated within 15 min, with a resolution of better than 1.0 for 123/124 bp.  相似文献   

5.
宋立国  陈洪  张乐  程介克 《色谱》1999,17(4):379-382
通过理论推导和实验验证表明;适当稀释DNA样品溶液,采用流体力学进样或电动进样都不会较大地减低峰高,而DNA片段毛细管电泳的分离效率和分离度还能有所提高。采用稀释样品的方法可提高DNA样品的使用效率。采用羟乙基纤维素无胶筛分介质分离了DNA片段。用激光诱导荧光(氩离子激光器,488nm)电荷耦合器件检测。用低浓度的筛分介质(0.4%)分离了分子质量较大的ADNA-HindⅢ全部8个片段(12bp~23130bP)。用高浓度的筛分介质(1.6%)分离分子质量较小的pBR322-HaeⅢ22个片段(18bp~587bp)。  相似文献   

6.
Han F  Xue J  Lin B 《Talanta》1998,46(4):735-742
A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.  相似文献   

7.
Lin YW  Huang MF  Chang HT 《Electrophoresis》2005,26(2):320-330
Capillary electrophoresis (CE) and microchip capillary electrophoresis (MCE) using polymer solutions are two of the most powerful techniques for the analysis of DNA. Problems, such as the difficulty of filling polymer solution to small separation channels, recovering DNA, and narrow separation size ranges, have put a pressure on developing new techniques for DNA analysis. In this review, we deal with DNA separation using chip-based nanostructures and nanomaterials in CE and MCE. On the basis of the dependence of the mobility of DNA molecules on the size and shape of nanostructures, several unique chip-based devices have been developed for the separation of DNA, particularly for long DNA molecules. Unlike conventional CE and MCE methods, sieving matrices are not required when using nanostructures. Filling extremely low-viscosity nanomaterials in the presence and absence of polymer solutions to small separation channels is an alternative for the separations of DNA from several base pairs (bp) to tens kbp. The advantages and shortages of the use of nanostructured devices and nanomaterials for DNA separation are carefully addressed with respect to speed, resolution, reproducibility, costs, and operation.  相似文献   

8.
快速、高效而灵敏的分离技术对于DNA的分析是至关重要的。使用无胶筛分介质的毛细管电泳是最重要的DNA分离技术之一,通常使用无交联的高分子溶液作为无胶筛分介质。本文在介绍高分子溶液理论的基础上,综述了DNA在毛细管电泳无胶筛分介质(缠结溶液和稀溶液)中的分离机理,主要包括Ogston筛分模型、各种修正的爬行模型、瞬态缠结偶合机理及其改进机理等。  相似文献   

9.
甘露醇添加剂对毛细管无胶筛分电泳分离DNA的影响   总被引:6,自引:0,他引:6  
韩富天  林炳承 《色谱》1998,16(6):489-491
在纤维素衍生物筛分体系中加入甘露醇添加剂大大提高了分离能力,在较低筛分剂浓度条件下可得到满意的分离。同时还对甘露醇影响分离的机理做出了解释。  相似文献   

10.
In spite of the significant progresses in the field of replaceable sieving matrices for separating DNA in capillary electrophoresis (CE), an intense research activity is still going on to improve the separation of large size DNA sequencing fragments. There are evidences, both from experimental and theoretical sides that the resolution of these fragments, at the single base, requires the use of sieving matrices comprised of long chain linear polymers. In the separation of DNA fragments by CE are of upmost importance: (i) the complete solubility of the polymer, (ii) the linearity of the chain, (iii) the achievement of ultrahigh viscosity in dilute solutions. The aim of this work is the synthesis of ultrahigh-molecular-weight polymers which possess the three requirements mentioned above by employing a nonconventional method. We demonstrate that the sieving performance of polyacrylamide is directly correlated to its intrinsic viscosity.  相似文献   

11.
Summary A rapid, robust and reproducible method providing excellent separation performance and simplicity using a 0.5% MC-4000 methyl cellulosic sieving medium in DB-1 coated capillaries has been developed. The method is suitable for qualitative comparison of DNA restriction profiles for fragments in the size range 100–1000 base pairs (bp). Efficiencies up to 8.5 million plates/m (1057 bp fragment) were recorded. Peak resolution of 6 bp (291/297 bp, 335/341 bp) and 4 bp (238/242 bp, 341/345 bp) was achieved. In addition, 1 bp partial resolution of 123/124 bp and 298/297 bp was obtained. Run-to-run (n=15), day-to-day (n=4), and capillary-to-capillary (n=3) variations of 0.1–0.2% RSD, 0.3–0.5% RSD, and 0.1–0.3% RSD, respectively, were observed. The MC-4000 sieving matrix was found to be better than hydroxypropyl methyl cellulose and hydroxypropyl cellulose, in terms of both performance and stability in the DB-1 coated capillaries. The efficiency and resolution in DB-WAX capillaries were inferior to those obtained in DB-1 capillaries. The commercially available DB-1 capillaries were stable for months in the sieving medium at pH 8.3 and could be regenerated to provide high efficiency after accidental current breaks.  相似文献   

12.
Denaturing CE (DCE) is a powerful tool for analysis of DNA variation. The development of commercial multi-CE instruments allows large-scale studies of DNA variation (many samples and many fragments). However, the cost of consumables like capillary arrays and sieving matrix might limit the use of DCE in such studies. Thus, we have tested 72 different in-house formulated sieving matrices' ability to suppress EOF and separate PCR-amplified alleles with the DCE variant, cycling temperature CE (CTCE). The data herein demonstrate that alleles can be baseline-separated by use of PVP and poly(N,N-dimethyl acrylamide) polymers at various percentages and pH. Allele separation by CTCE is matrix-independent and consequently applicable to any capillary instrument used for DNA separation. Formulation of sieving matrix for CTCE was done by dissolving appropriate amount of polymer powder into the running buffers. Allele separation was observed at different pH (7.5-8.5), concentrations and molecular size of the polymer, without compromising the separation and reproducibility. Finally, the cost reduction of homemade matrices is more than 1000-fold as compared to commercial sieving matrices.  相似文献   

13.
Slater GW 《Electrophoresis》2002,23(10):1410-1416
The separation of DNA fragments by gel electrophoresis has been studied extensively over the last two decades. More recently, similar studies have been carried out to characterize the separation achieved by the current capillary array electrophoresis systems and their sieving polymer solutions. In all cases, at least three different mobility regimes have been shown to exist: the Ogston regime when the radius of gyration of the DNA fragment is smaller than the pore size, the reptation regime when the DNA is larger than the pore size but remains in a random coil conformation, and finally the reptation-with-orientation regime where the DNA orients in the field direction and essentially all resolution is lost. Unfortunately, although theory helps us understand the different regimes and how to properly exploit them, we still have no theory-based general equations that would apply to all regimes. Such equations would be especially useful to analyze data, optimize separation systems and interpolate mobilities to estimate unknown molecular sizes. Recently, van Winkle, Beheshti and Rill (Electrophoresis 2002, 23, 15-19) proposed an intriguing empirical formula that seems to adequately fit the mobility of dsDNA fragments across all three regimes. In this paper, I investigate the relation between this empirical formula and the known theories of gel electrophoresis, and I study the dependence of its fitting parameters upon the experimental conditions. Finally, I examine how this equation may need to be modified to capture the more subtle details predicted by fundamental theories of DNA gel electrophoresis.  相似文献   

14.
The novel polymer matrices reported here are low-viscosity sieving media for DNA capillary electrophoresis. This new family of matrices comprises copolymers of N,N-dimethylacrylamide with different monomers which increase polymer hydrophilicity. All these new copolymers self-coat on fused-silica capillaries. Resolution, peak spacing and peak width were the parameters taken into account to assess the influence of polymer structure on separation selectivity and efficiency. This work demonstrates that the performance of polydimethylacrylamide (PDMA) can be improved through copolymerization with hydrophilic monomers. The improvement is related to the efficiency parameter. The new copolymers, due to their low viscosity high sieving capacity and ability to suppress EOF, represent a better alternative to PDMA and are suitable replaceable matrices for capillary and microchip electrophoresis.  相似文献   

15.
A critical review of the existing theoretical models and experimental evidences for sieving mechanisms during separation of macromolecules, paying particular attention to capillary electrophoresis applications is presented. Gel models (Ogston and reptation) have been successfully applied to highly entangled polymer solutions, where fast and efficient separations can occur. In order to account for the DNA/polymers collision-interaction mechanisms during separation in dilute solutions - characterized by a poorer resolution -, approximated analytical models have been developed. An insight in the mechanism regulating the intermediate case of moderately entangled polymer solutions, for low fields and concentrations of small multiples of the overlap concentration c*, is given by the constraint release approach. This model proposes an upper limit of size separation, increasing with matrix concentration and molecular mass. Finally, the coupling between the reptative motion of the analytes and the effect of matrix constraint release very likely plays a fundamental role in the separation mechanism and requires therefore further and deeper investigation, both theoretically and experimentally.  相似文献   

16.
Jin Y  Lin B  Fung YS 《Electrophoresis》2001,22(11):2150-2158
A newly developed polymer coil shrinking theory is described and compared with the existing entangled solution theory to explain electrophoretic migration behaviour of DNA in hydroxypropylmethylcellulose (HPMC) polymer solution in buffer containing 100 mM tris(hydroxymethyl)aminomethane 100 mM boric acid, 2 mM ethylenediaminetetraacetic acid at pH 8.3. The polymer coil shrinking theory gave a better model to explain the results obtained. The polymer coil shrinking concentration, Cs, was found to be 0.305% and the uniform entangled concentration, C+, 0.806%. The existence of three regions (the dilute, semidilute, and concentrated solution) at different polymer concentrations enables a better understanding of the system to guide the selection of the best conditions to separate DNA fragments. For separating large fragments (700/ 800 bp), dilute solutions (HPMC < 0.3%) should be used to achieve a short migration time (10 min). For small fragments (200/300 bp), concentrated solutions are preferred to obtain constant resolution and uniform separation. The best resolution is 0.6% HPMC due to a combined interaction of the polymer coils and the entangled structure. The possibility of DNA separation in semidilute solution is often neglected and the present results indicate that this region has a promising potential for analytical separation of DNA fragments.  相似文献   

17.
We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.  相似文献   

18.
用于毛细管电泳DNA分离的合成聚合物*   总被引:1,自引:0,他引:1  
王前  许旭 《化学进展》2003,15(4):275-287
毛细管电泳的无胶筛分方法在DNA片段分离、DNA 测序方面取得了显著的成绩并已成功应用于人类基因组计划.该法是在毛细管柱中充入一定浓度和组成的线性高分子溶液,利用其对样品组分电泳迁移时的阻滞作用,按分子量大小对DNA等生物大分子进行筛分分离分析.因此,聚合物筛分介质的类型、组成和性质会显著影响分离效果.近年来,由于受到基因组计划的影响,出现了许多用于DNA片段分离和DNA测序的水溶性高分子聚合物,并取得很大进展.本文按照均聚物和共聚物的分类,综述了作为筛分介质的各种合成聚合物及其应用效果,并简要介绍了有关的筛分理论和分离的评价指标.  相似文献   

19.
Cretich M  Chiari M  Rech I  Cova S 《Electrophoresis》2003,24(21):3793-3799
DNA fragment analysis requires the use of polymer solutions as sieving matrices. Generally, such matrices are constituted of high-molar-weight polymers employed at a concentration higher than their entanglement threshold concentration. These polymer solutions are highly viscous and difficult to use in the narrow channels of a microchip. Ultralarge polyacrylamides synthesized via a nonconventional method, being the low-temperature plasma-induced polymerization (PIP), were used as DNA sieving matrices for microchip electrophoresis. The distinctive features of these polymers (ultralarge molecular mass and linearity) allow their use at a dilute concentration. Dilute PIP polyacrylamides revealed a constant value of resolution in a broad range of DNA fragment sizes (123 bp-1353 bp), thus proving to be effective in common genotyping applications. Moreover, the low viscosity of the dilute solutions enable it to be easier and faster in filling the channel between runs, thus enhancing the throughput of the microchip devices.  相似文献   

20.
Dong Y  McGown LB 《Electrophoresis》2011,32(10):1209-1216
Sieving gels are used in capillary gel electrophoresis to resolve DNA strands of different lengths. For complex samples, however, such as those encountered in metagenomic analysis of microbial communities or biofilms, length-based separation may mask the true genetic diversity of the community since different organisms may contribute same-length DNA with different sequences. There is a need, therefore, for DNA separations based on both the length and sequence. Previous work has demonstrated the ability of guanosine gels (G-gels) to separate four single-stranded DNA 76-mers that differ by only a few A/G base substitutions. The goal of the present work is to determine whether G-gels could be combined with commercial sieving gels in order to simultaneously separate DNA based on both length and sequence. The results are given for the four 76-mers and for a standard dsDNA ladder. Commercial sieving gels were used alone and in combination with G-gels. For the 76-mers, the combined medium was less efficient than the G-gel alone but was able to achieve partial resolution. The combined medium was at least as effective as the sieving gel alone at resolving the denatured DNA ladder and showed indications of sequence-based resolution as well, as supported by MALDI-MS. The results show that the combined sieving gel/G-gel medium retains the selectivity of the individual media, providing a promising approach to simultaneous length- and sequence-based DNA separation for metagenomic analysis of complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号