首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

2.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

3.
We synthesized and characterized three new amorphous dithienylbenzothiadiazole (TBT)‐triphenylamine (TPA) polymers for application in bulk‐heterojunction (BHJ) organic photovoltaic (OPV) cells. Poly(3HTBT‐TPA) has hexyl side chains on the thienyl groups (pointing toward the benzothiadiazole (BTD) unit), and poly(4HTBT‐TPA) has hexyl side chains on the thienyl groups (pointing outward from the BTD unit). The incident photon to current conversion efficiencies (IPCEs) in the region from 550 to 650 nm for the OPV cells prepared using poly(4HTBT‐TPA) were higher than those for the OPV cells prepared using poly(3HTBT‐TPA) because the absorption spectrum for the poly(4HTBT‐TPA) has a slightly red‐shifted absorption edge. We also demonstrated that the poly(4HTBT‐TPA)‐based OPV performance is independent of the fabrication process, so using an amorphous film to fabricate BHJ OPV cells offers great advantages over using a polycrystalline film in terms of the high reproducibility of the OPV performance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2536–2544  相似文献   

4.
A new polythiophene derivative was synthesized by both chemical and electrochemical oxidative polymerization of 1‐(1‐phenylethyl)‐2,5‐di(2‐thienyl)‐1H‐pyrrole (PETPy). Of which the chemical method produces a polymer that is completely soluble in organic solvents. The structures of both the monomer and the soluble polymer were elucidated by nuclear magnetic resonance (1H and 13C NMR) and Fourier transform infrared (FTIR) spectroscopy. The average molecular weight has been determined by gel permeation chromatography to be Mn = 3.29 × 103 for the chemically synthesized polymer. Polymer of PETPy was synthesized via potentiostatic electrochemical polymerization in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent–electrolyte couple. Characterizations of the resulting polymer were performed by cyclic voltammetry, FTIR, scanning electron microscopy, and UV–vis spectroscopy. Four‐probe technique was used to measure the conductivities of the samples. Moreover, the spectroelectrochemical and electrochromic properties of the polymer films were investigated. In addition, dual‐type polymer electrochromic devices based on P(PETPy) with poly(3,4‐ethylenedioxythiophene) were constructed. Spectroelectrochemistry, electrochromic switching, and open circuit stability of the devices were studied. They were found to have good switching times, reasonable contrasts, and optical memories. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2215–2225, 2006  相似文献   

5.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Silole‐containing conjugated polymers ( P1 and P2 ) carrying methyl and octyl substituents, respectively, on the silicon atom were synthesized by Suzuki polycondensation. They show strong absorption in the region of 300–700 nm with a band gap of about 1.9 eV. The two silole‐containing conjugated polymers were used to fabricate polymer solar cells by blending with PC61BM and PC71BM as the active layer. The best performance of photovoltaic devices based on P1 /PC71BM active layer exhibited power conversion efficiency (PCE) of 2.72%, whereas that of the photovoltaic cells fabricated with P2 /PC71BM exhibited PCE of 5.08%. 1,8‐Diiodooctane was used as an additive to adjust the morphology of the active layer during the device optimization. PCE of devices based on P2 /PC71BM was further improved to 6.05% when a TiOx layer was used as a hole‐blocking layer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Two low‐band gap polymer series based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and dithienylbenzothiadiazole, with different numbers of fluorine substituents on the 2,3,1‐benzothiadiazole unit, have been synthesized and explored in a comparative study of the photochemical stability and operational lifetime in flexible large area roll‐coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2‐hexyldecyloxy (BDTHDO) ( P1–P3 ) or 2‐hexyldecylthiophene (BDTTHD) ( P4–P6 ). The photochemical stability clearly shows that the stability enhances along with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium‐tin‐oxide‐free plastic substrates. Solar cells based on the P4–P6 series showed the best performance, reaching efficiencies up to 3.8% for an active area of 1 cm2, due to an enhanced current compared to P1–P3 . Lifetime measurements, carried out according to international summit on OPV stability (ISOS), of encapsulated devices reveals an initial fast decay for P1–P6 in the performance followed by a much slower decay rate, still retaining 40–55% of their initial performance after 250 h of testing under ISOS‐L‐1 conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 893–899  相似文献   

8.
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838  相似文献   

9.
This study is focused on the development of electrochromic (EC) materials that could be incorporated into electrically‐driven switchable devices such as electrochromogenic glasses. The ultimate goal of this research is to depart from the complexity of the EC device construction which is in use today. Such construction consists of three layers each of them incorporating a specific functionality: the electrochromophore, the electrolyte and the ion storage, assembled between two transparent or reflective electrodes. In most of these conventional devices the electrolyte layer is a liquid or a gel. Since solid‐state EC devices are of high commercial interest, we are exploring various avenues to reduce the number of layers to one layer that is all‐solid and electrochromically/electrolytically and ionically functional. The design strategy is based on the use of polymers such as poly(epichlorohydrin‐co‐ethylene oxide), poly(vinyl butyral) and poly(ethylene‐co‐methacrylic acid) ionomer, to which EC properties were introduced by grafting reactions with specifically synthesized carbazole derivatives. A combination of analytical techniques was used to characterize the monomers and the carbazole‐grafted polymers. A proof of concept was demonstrated for a single‐layer, all‐solid‐state EC device consisting of a film of poly(ECH‐co‐EO) containing pendent carbazole groups, assembled between two transparent electrodes, Sn‐doped In2O3 oxide‐coated glasses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Four polythiophene derivatives including regiorandom polymers P1 , P2 , and P3 and a regioregular polymer P4 , containing a phenyl side chain with electron‐withdrawing carbonyl groups such as an ester and a ketone at the 3‐position of the thiophene ring, were synthesized by Stille coupling reaction. Bulk‐heterojunction polymer solar cells (PSCs) based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) were fabricated, and their photovoltaic performances were evaluated for the first time. The PSC devices based on the regioregular polymer P4 :PCBM = 1:2 (w/w) exhibited a high‐open‐circuit voltage (Voc) of 0.943 V because of the low‐lying highest occupied molecular orbit energy level of P4 . The short π–π stacking distance (0.355 nm) in the parallel direction to the substrate and “face‐on” rich orientation were observed by the grazing incidence wide‐angle X‐ray scattering experiment, which might reflect higher Jsc and FF values of the P4 :[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) PSC device than others. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 875–887  相似文献   

11.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Two novel polymeric acceptors based on naphthalene diimide (NDI) and 2.2′‐bithiophene, named as P(NDI2THD‐T2) and P(NDI2TOD‐T2), were designed and synthesized for all polymer solar cells application. The structural and electronic properties of the two acceptors were modulated through side‐chain engineering of the NDI units. The optoelectronic properties of the polymers and the morphologies of the blend films composed of the polymer acceptors and a donor polymer PTB7‐Th were systemically investigated. With thiophene groups introduced into the side chains of the NDI units, both polymers showed wider absorption from 350 nm to 900 nm, compared with the reference polymer acceptor of N2200. No redshift of absorption spectra from solutions to films indicated reduced aggregation of the polymers due to the steric hindrance effect of thiophene rings in the side chains. The photovoltaic performance were characterized for devices in a configuration of ITO/PEDOT:PSS/PTB7‐Th:acceptors/2,9‐bis(3‐(dimethylamino)propyl)anthra[2,1,9‐def:6,5,10‐def]diisoquinoline‐1,3,8,10(2H,9H)‐tetraone (PDIN)/Al. With the addition of diphenyl ether as an additive, the power conversion efficiencies (PCEs) of 2.73% and 4.75% for P(NDI2THD‐T2) and P(NDI2TOD‐T2) based devices were achieved, respectively. The latter showed improved Jsc, Fill Factor (FF), and PCE compared with N2200 based devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3679–3689  相似文献   

13.
We have investigated the effect of solvent–polymer interaction on the morphology, crystallinity, and device performance of poly‐(3‐hexylthiophene) (P3HT) and poly{2,7‐(9,9‐didodecyl‐fluorene)‐alt‐5,5‐[4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothia‐diaole]} (PF12TBT) blend system. 3‐Hexylthiophene (3‐HT), which had the similar structural units with both donor and acceptor materials, was chosen as the solvent additive to be added into the main solvent chlorobenzene (CB), to adjust the solvent–polymer interaction. With the 3‐HT percentage increasing from 5 to 30% in CB solution, the solvent–polymer interaction between polymer and solvent molecules decreased slightly according to the calculated solubility parameters (δ) and interaction parameters (χ12). As a result, nanoscale phase‐separated and interconnected morphology with decreased domain size of both donor and acceptor was formed. Meanwhile, the order of P3HT molecule was enhanced which resulted from the extended film drying time and increased molecular planarity after incorporation of 3‐HT. The power conversion efficiency (PCE) had a gradual improvement to 1.08% as the 3‐HT percentage reached 10%, which can be attributed to the enhanced short‐circuit current (Jsc) and fill factor (FF). However, when the 3‐HT percentage exceeded 20%, the decreased Jsc and FF ultimately decreased the PCE. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 288–296  相似文献   

14.
The effect of solvent blending on the performance of an anthracene‐containing poly(p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) backbone‐based donor polymer with asymmetrically substituted branched 2‐ethylhexyloxy and methyloxy side‐chains in bulk heterojunction solar cells is reported. This copolymer yields relatively high open‐circuit voltages with fullerene‐based electron acceptors. We systematically studied the thin‐film blend morphology and solar cell performance as a function of solvent composition (chlorobenzene to chloroform ratio) and polymer to [6,6]‐phenyl C61‐butyric acid methylester (PCBM) ratio. We combined photophysical investigations with atomic force microscopy and grazing incidence wide‐angle X‐ray scattering to elucidate the solid‐state morphology in thin films. In the investigated polymer system, the blend morphology becomes independent of the supporting solvent for high PCBM concentrations. Deposition from solvent blends rather than from pure chlorobenzene facilitates the beneficial phase separation between polymer and PCBM, leading to improved charge transport properties (short‐circuit currents) at lower PCBM concentrations. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 868–874  相似文献   

15.
Olefin group‐carrying styrene, 1‐but‐3‐enyl‐4‐vinylbenznene (BVB), was polymerized via atom transfer radical polymerization (ATRP) initiated from C‐methylcalix [4]resorcinarene‐based multifunctional initiator (CRA‐bib) at low conversion to produce star polymer [poly(BVB)] with narrow molecular weight distribution (Mw/Mn < 1.35). The copolymerization of styrene (St) with poly(BVB) (Mn = 11,000, Mw/Mn = 1.23) as a macroinitiator afforded star block copolymer [poly(BVB‐b‐St)] with Mn = 35,000 and Mw/Mn = 1.44. The BVB layer of poly(BVB‐b‐St), located between the St shell and the CRA core, was crosslinked by olefin metathesis reaction of olefin groups o the BVB moieties. The removal of the CRA core of the crosslinked poly(BVB‐b‐St) by hydrolysis using KOH as a base gave polymeric hollow sphere [poly(cored crossBVB‐b‐St)] with good solubility in organic solvents. The morphological structure of the poly(cored crossBVB‐b‐St) showed spherical aggregates in THF by scanning electron microscopy (SEM). Furthermore, the nanocapsule structure of poly(cored crossBVB‐b‐St) with hollow spheres was found to be observed by transmission electron microscopy (TEM). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4879–4888, 2008  相似文献   

16.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

17.
An alternating copolymer composed of heal‐to‐tail‐structured 3,4′‐dihexyl‐2,2′‐bithiophene (DHBT) and pyrene units [poly(DHBT‐alt‐PYR)] was synthesized using a Stille coupling reaction for use in photovoltaic devices as a p‐type donor. For the reduction of the bandgap energy of poly(DHBT‐alt‐PYR), 4,7‐bis(3′‐hexyl‐2,2′‐bithiophen‐5‐yl)benzo[c][1,2,5]thiadiazole (BHBTBT) units were introduced into the polymer. Poly(DHBT‐co‐PYR‐co‐BHBTBT)s were synthesized using the same polymerization reaction. The synthesized polymers were soluble in common organic solvents and formed smooth thin films after spin casting. The optical bandgap energies of the polymers were obtained from the onset absorption wavelengths. The measured optical bandgap energy of poly(DHBT‐alt‐PYR) was 2.47 eV. As the BHBTBT content in the ter‐polymers increased, the optical bandgap energies of the resulting polymers decreased. The bandgap energies of poly(50DHBT‐co‐40PYR‐co‐10BHBTBT) and poly(50DHBT‐co‐20PYR‐co‐30BHBTBT) were 1.84 and 1.73 eV, respectively. Photovoltaic devices were fabricated with a typical sandwich structure of ITO/PEDOT:PSS/active layer/LiF/Al using the polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester as the electron acceptor. The device using poly(50DHBT‐co‐20PYR‐co‐30BHBTBT) showed the best performance among the fabricated devices, with an open‐circuit voltage, short‐circuit current, fill factor, and maximum power conversion efficiency of 0.68 V, 5.54 mA/cm2, 0.35, and 1.31%, respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Various molar ratios of platinum complexes were introduced into the conjugated backbone of the well‐studied poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)](PNDIT2) acceptor polymer through random terpolymer approach. Terpolymers PNDIT2Ptx (x = 1, 2 and 5) exhibited slightly higher melting point (Tm), crystallization temperature, HOMO and LUMO energy levels than the control PNDIT2 copolymer due to the introduction of small amount of weaker electron‐withdrawing bulky rigid Pt complex instead of strong electron‐withdrawing flexible naphthalene diimide. When blended them with poly[[2,6′‐4,8‐di(5‐ethylhexylthienyl)benzo[1,2‐b;3,3‐b] dithiophene] [3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) in all polymer solar cells, enhanced power conversion efficiency of 4.51% (3.74%) was obtained in terpolymer PNDIT2Pt1 based device compared to 3.88% (3.24%) of the control PNDIT2 at the same inverted (conventional) device conditions. The enhancement was probably ascribed to higher hole and electron transport ability and more efficient charge separation. To the best of our knowledge, this is the first example of random terpolymer acceptors based on heavy metal complexes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 105–115  相似文献   

19.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

20.
An angular‐shaped naphthalene tetracarboxylic diimide (NDI) was designed and synthesized as a new building block for n‐type conjugated polymers to tune their energy levels. Three n‐type copolymers incorporating this angular‐shaped NDI as the acceptor moiety were obtained by Stille coupling reactions and had number average molecular weights of 18.7–73.0 kDa. All‐polymer bulk‐heterojunction solar cells made from blends of these polymers with poly(3‐hexylthiophene) gave a power conversion efficiency up to 0.32% and exhibited an open‐circuit voltage (Voc) up to 0.94 V due to their relative high‐lying lowest unoccupied molecular orbital energy levels. The high Voc of 0.94 V is higher than that of solar cells based on linear‐shaped NDI‐containing polymers (<0.6 V). The results indicate that the angular‐shaped NDI is a promising building block for constructing nonfullerene polymer acceptors for solar cells with high open‐circuit voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号