首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bis(PNP)-donor pincer ligand 1,4-C(6)H(4){N(CH(2)CH(2)PPh(2))(2)}(2), 1, contains weakly basic nitrogen donor atoms because the lone pairs of electrons are conjugated to the bridging phenylene group, and this feature is used in the synthesis of oligomers and polymers. The complexes [Pd(2)X(2)(mu-1)](OTf)(2), X=Cl, Br or OTf, contain the ligand 1 in bis(pincer) binding mode (mu-kappa(6)-P(4)N(2)), but [Pd(4)Cl(6)(mu(3-)1)(2)]Cl(2) contains the ligand in an unusual unsymmetrical mu(3)-kappa(5)-P(4)N binding mode. The bromide complex is suggested to exist as a polymer [{Pd(2)Br(4)(mu(4)-1)}(n)] with the ligands 1 in mu(4)-kappa(4)-P(4) binding mode. The methylplatinum(II) complexes [Pt(2)Me(4)(mu-1)] and [Pt(2)Me(2)(mu-1)](O(2)CCF(3))(2) contain the ligand in mu-kappa(4)-P(4) and mu-kappa(6)-P(4)N(2) bonding modes, while the silver(I) complex [Ag(2)(O(2)CCF(3))(2) (mu-1)] contains the ligand 1 in an intermediate bonding mode in which the nitrogen donors are very weakly coordinated. The complexes [Pd(2)(OTf)(2)(mu-1)](OTf)(2) and [Ag(2)(O(2)CCF(3))(2)(mu-1)] react with 4,4'-bipyridine to give polymers [Pd(2)(micro-bipy)(mu-1)](OTf)(4) and [Ag(2)(mu-bipy)(mu-1)](O(2)CCF(3))(2).  相似文献   

2.
A compound reported earlier (Polyhedron 1989, 8, 2339) as (Bu(n)()(4)N)(2)H(2)[Mo(2)[Mo(CO)(4)(PhPO(2))(2)](2)] has been reexamined. We find that the hydrogen atoms in this formula are not present. Therefore, the complex must be considered as having a central triply bonded Mo(2)(6+) unit, instead of a quadruply bonded Mo(2)(4+) unit. Our conclusion is based on a variety of experimental evidence, including X-ray crystal structures of four crystal forms, as well as the neutron crystal structure of one. This explains the relatively long Mo-Mo bond lengths found in the range 2.1874(7)-2.2225(7) A and the absence of a delta --> delta transition in the visible spectrum. From electrochemistry we also find that the diphosphonate ligand has such an exceptional ability to stabilize higher oxidation states that even common solvents such as CH(2)Cl(2) and C(2)H(5)OH readily oxidize the Mo(2)(4+) unit that is introduced from the Mo(2)(O(2)CCH(3))(4) or [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](BF(4))(2) employed in the preparation. The only chemically reversible wave at E(1/2) = -1.54 V vs Ag/AgCl corresponds to the reduction process Mo(2)(6+) --> Mo(2)(5+).  相似文献   

3.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

4.
Mao LF  Mayr A 《Inorganic chemistry》1996,35(11):3183-3187
The complexes trans-[MI(2)(CNC(6)H(4)-CN-4)(2)], (M = Pd and Pt), trans-[FeI(2)L(4)] (L = CNC(6)H(4)-CN-4 and CNC(6)H(2)-Me(2)-2,6-CN-4), and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] were prepared. The compounds are thermally stable up to 230 degrees C or higher. The molecular structure of trans-[FeI(2)(CNC(6)H(4)-CN-4)(4)] was determined by X-ray crystallography: monoclinic, space group P2(1)/n, a = 11.570(2) ?, b = 10.1052(8) ?, c = 28.138(7) ?, beta = 92.034(9) degrees, Z = 4, 3464 unique reflections, R = 0.074, R(w) = 0.089. The complexes contain the peripheral cyano groups in linear, planar, and octahedral dispositions, respectively. Solids were obtained by combining solutions of [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)], [FeI(2)(CNC(6)H(4)-CN-4)(4)] and AgSO(3)CF(3), [FeI(2)(CNC(6)H(2)-Me(2)-2,6-CN-4)(4)] and [Rh(2)(O(2)CCF(3))(4)], and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] and [Rh(2)(O(2)CCF(3))(4)]. [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)] in a ratio of 1:2 form a crystalline, one-dimensional solid: monoclinic, space group P2(1)/c, a = 8.317(2) ?, b = 13.541(1) ?, c = 22.568(5) ?, beta = 100.45(1) degrees, Z = 2, 3279 unique reflections, R = 0.037, R(w) = 0.047.  相似文献   

5.
A number of local and integral topological parameters of the electron density of relevant bonding interactions in the binuclear molybdenum complexes [Mo(2)Cl(8)](4-), [Mo(2)(μ-CH(3)CO(2))(4)], [Mo(2)(μ-CF(3)CO(2))(4)], [Mo(2)(μ-CH(3)CO(2))(4)Br(2)](2-), [Mo(2)(μ-CF(3)CO(2))(4)Br(2)](2-), [Mo(2)(μ-CH(3)CO(2))(2)Cl(4)](2-), [Mo(2)(μ-CH(3)CO(2))(2)(μ-Cl)(2)Cl(4)](2-), and [Mo(2)(μ-Cl)(3)Cl(6)](3-) have been calculated and interpreted under the perspective of the quantum theory of atoms in molecules (QTAIM). These data have allowed a comparison between related but different atom-atom interactions, such as different Mo-Mo formal bond orders, ligand-unbridged versus Cl-bridged, CH(3)CO(2)-bridged, and CF(3)CO(2)-bridged Mo-Mo interactions, and Mo-Cl(terminal) and Mo-Cl(bridge) versus Mo-Br and Mo-O interactions. Calculations carried out using nonrelativistic and relativistic approaches afforded similar results.  相似文献   

6.
Take five: A unique quintuply bonded dimolybdenum complex [Mo(2)(μ-Li){μ-HC(N-2,6-Et(2)C(6)H(3))(2)}(3)] (see picture) was synthesized and characterized. The Mo-Mo interaction includes an unexpected bridging Li(+) ion. Calculations indicate the bridging Li(+) ion does not perturb the Mo-Mo bond length (2.0612(4)??), but results in a relatively small effective Mo-Mo bond order of 3.67.  相似文献   

7.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

8.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

9.
Reactions of Ti(NMe(2))(2)Cl(2) with a wide range of primary alkyl and arylamines RNH(2) afforded the corresponding 5-coordinate imido titanium compounds Ti(NR)Cl(2)(NHMe(2))(2) (R = (t)Bu (1), (i)Pr (2), CH(2)Ph (3), Ph (4), 2,6-C(6)H(3)Me(2) (5), 2,6-C(6)H(3)(i)Pr(2) (6), 2,4,6-C(6)H(2)F(3) (7), 2,3,5,6-C(6)HF(4) (8), C(6)F(5) (9), 4-C(6)H(4)Cl (10), 2,3,5,6-C(6)HCl(4) (11), 2-C(6)H(4)CF(3) (12), 2-C(6)H(4)(t)Bu (13)). The compounds 1-13 are monomeric in solution but in the solid state form either N-H...Cl hydrogen bonded dimers or chains or perfluorophenyl pi-stacked chains, depending on the imido R-group. The compound 13 was also prepared in a "one-pot" synthesis from RNH(2) and Ti(NMe(2))(4) and Me(3)SiCl. Reaction of certain Ti(NR)Cl(2)(NHMe(2))(2) compounds with an excess of pyridine afforded the corresponding bis- or tris-pyridine analogues [Ti(NR)Cl(2)(py)(x)](y) (x = 3, y = 1; x = y = 2), and the structure of Ti(2)(NC(6)F(5))(2)Cl(2)(mu-Cl)(2)(py)(4) shows pi-stacking of perfluorophenyl rings. Reaction of Ti(NMe(2))(2)Cl(2) with cross-linked aminomethyl polystyrene gave quantitative conversion to the corresponding solid-supported titanium imido complex. This paper represents the first detailed study of how supramolecular structures of imido compounds may be influenced by simple variation of the imido ligand N-substituent.  相似文献   

10.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

11.
The reaction of PbBr(2) with the lithium reagents LiC(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2) (LiArPr(i)(2)) and Et(2)O.LiC(6)H(3)-2,6-(2,6-Pr(i)-4-Bu(t)C(6)H(2))(2) (Et(2)O.LiArPr(i)(2)Bu(t)) furnished the bromide bridged organolead(II) halides [Pb(mu-Br)ArPr(i)(2)](2) (1) and[Pb(mu-Br)ArPr(i)(2)Bu(t)](2) (2) as orange crystals. Treatment of 1 with a stoichiometric amount of methylmagnesium bromide resulted in the "diplumbene" Pr(i)(2)Ar(Me)PbPb(Me)ArPr(i)(2) (3). The addition of 1 equiv of 4-tert-butylphenylmagnesium bromide to 1 afforded the feebly associated, Pb-Pb bonded species [Pb(C(6)H(4)-4-Bu(t))ArPr(i)(2)](2) (4), whereas the corresponding reaction of tert-butylmagnesium chloride and 1 afforded the monomer Pb(Bu(t))ArPr(i)(2) (5). The reaction of the more crowded aryl lead(II) bromide [Pb(mu-Br)ArPr(i)(3)](2) (Ar = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)) with 4-isopropyl-benzylmagnesium bromide or LiSi(SiMe(3))(3) yielded the monomers 6, [Pb(CH(2)C(6)H(4)-4-Pr(i))ArPr(i)(3)], or 7, [Pb(Si(SiMe(3))(3))ArPr(i)(3)]. All compounds were characterized with use of X-ray crystallography, (1)H, (13)C, and (207)Pb NMR (3-7), and UV-vis spectroscopy. The dimeric Pb-Pb bonded (Pb-Pb = 3.1601(6) A) structure of 3 may be contrasted with the previously reported monomeric structure of Pb(Me)ArPr(i)(3), which differs from 3 only in that it has para Pr(i) substituents on the flanking aryl rings. The presence of these groups is sufficient to prevent the weak Pb-Pb bonding seen in 3. The dimer 4 displays a Pb-Pb distance of 3.947(1) A, which indicates a very weak lead-lead interaction, and it is possible that this close approach could be caused by packing effects. The monomeric structures of 6 and 7 are attributable to steric effects and, in particular, to the large size of ArPr(i)(3).  相似文献   

12.
The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)]]Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me(2)C(4)H(6)] have also been investigated, including Ph[Me(2)C(4)H(6)]PS, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Cl, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Me, Ir[PPh[Me(2)C(4)H(6)]](COD)(Cl), and Pd[P[Me(2)C(4)H(6)]Ph][eta(2)-C(6)H(4)C(H)(Me)NMe(2)]Cl. The steric and electronic properties of PhP[(C(5)Me(4))(2)] are determined to be intermediate between those of PPh(2)Me and PPh(3). Thus, the crystallographic cone angles increase in the sequence PPh(2)Me (134.5 degrees) < PhP[(C(5)Me(4))(2)] (140.2 degrees) < PPh(3) (148.2 degrees), while the electron donating abilities decrease in the sequence PPh(2)Me > PhP[(C(5)Me(4))(2)] > PPh(3). Finally, PhP[(C(5)Me(4))(2)] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me(2)C(4)H(6)].  相似文献   

13.
New homonuclear dimeric Pd(ii) complexes have been synthesized by the reaction of Pd(en)(2+) or Pd(bipy)(2+) (where en = ethylenediamine and bipy = 2,2'-bipyridine) units with acetamide or by the Pd(ii) mediated hydrolysis of CH(3)CN. In these dimers the two metal centers are bridged by either two amidates or by the combination of one hydroxo group and one amidate ligand. The crystal structures of complexes {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(NO(3))(2).H(2)O.1/2(CH(3))(2)CO.1/2CH(3)CN () and {[Pd(bipy)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2) () showed intrametallic Pd-Pd distances of 2.8480(8) A () and 2.8384(7) A (), respectively, in accordance with the accepted values for a strong Pd-Pd interaction. The presence of pi[dot dot dot]pi interactions between the bipyridine ligands on the di-micro-amidate complexes of Pd(bipy)(2+) shortens the distance between the two Pd centers and allows the formation of the metal-metal interaction. By contrast, the crystal structure of complex {[Pd(en)](2)(micro-1,3-CH(3)CONH)(2)}(OTf)(2).H(2)O (), (where OTf = triflate) where there is no pi[dot dot dot]pi interaction between the ligands on the metal centers, is also reported, and no Pd-Pd interaction is observed. Additionally, one of the complexes, {[Pd(en)](2)(micro-OH)(micro-CH(3)CONH)}(NO(3))(2) (), presents an interesting hydrogen bonded 3-D network formed by nitrate ions and water molecules. All complexes have been characterized by infrared and (1)H NMR spectroscopy.  相似文献   

14.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

15.
Treatment of the organoamido complexes [Rh(2)(mu-4-HNC(6)H(4)Me)(2)(L(2))(2)] (L(2) = 1,5-cyclooctadiene (cod), L = CO) with nBuLi gave solutions of the organoimido species [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(L(2))(2)]. Further reaction of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(cod)(2)] with [Rh(2)(mu-Cl)(2)(cod)(2)] afforded the neutral tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(cod)(4)] (2), which rationalizes the direct syntheses of 2 from [Rh(2)(mu-Cl)(2)(cod)(2)] and Li(2)NC(6)H(4)Me. Reactions of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(CO)(4)] with chloro complexes such as [Rh(2)(mu-Cl)(2)(CO)(4)], [MCl(2)(cod)] (M = Pd, Pt), and [Ru(2)(mu-Cl)(2)Cl(2)(p-cymene)(2)] afforded the homo- and heterotrinuclear complexes PPN[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)] (5; PPN=bis(triphenylphosphine)iminium), [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)M(cod)] (M = Pd (6), Pt(7)) and [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)Ru(p-cymene)] (8), while the reaction with [AuCl(PPh(3))] gave the tetranuclear compound [(CO)(4)Rh(2)(mu--4-NC(6)H(4)Me)(2)[Au(PPh(3))](2)] (9). The structures of complexes 6, 8, and 9 were determined by X-ray diffraction studies. The anion of 5 reacts with [AuCl(PPh(3))] to give the butterfly cluster [[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)]Au(PPh(3))] (10), in which the Au atom is bonded to two rhodium atoms. Reaction of the anion of 5 with [Rh(cod)(NCMe)(2)](BF(4)) gave the tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(CO)(6)(cod)] (11) in which the Rh(cod) fragment is pi-bonded to one of the arene rings, while the reaction of the anion of 5 with [PdCl(2)(cod)] afforded the heterotrinuclear complex 6 through a metal exchange process.  相似文献   

16.
Reaction of MoCl3(THF)3 with [Me2Si{NLi(Dipp)}2]2 (Dipp = 2,6-i-PrC6H3) afforded a triply bonded dimolybdenum complex 1,2-Mo2Cl2[Me2Si(NDipp)2]2 1, spanned by two Me2Si[N(Dipp)]2 ligands, thus resulting in a syn conformation. The air- and moisture-sensitive compound 1 was characterized by NMR spectroscopic, elemental, and single-crystal X-ray crystallographic analysis. Reduction of 1 by Na/Hg yielded the quadruply bonded dimeric complex Mo2[Me2Si(NDipp)2]2 2, which was also characterized by the aforementioned analytical methods. The Mo-Mo bond was determined to be 2.1784(12) A, which is considered a long quadruple bond. In addition, density functional theory (DFT) computations on compound 2 provided insight into the intriguing Mo-Mo quadruple bond.  相似文献   

17.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

18.
Three dimeric vanadium(I) β-diketiminates [V{μ-(η(6)-ArN)C(Me)CHC(Me)C(N-Ar)}](2) (Ar = 2,6-Me(2)C(6)H(3) (2), 2,6-Et(2)C(6)H(3) (3), 9-anthracenyl (4)) were prepared and isolated upon reduction of their corresponding dichloro precursors VCl(2)(Nacnac). Compounds 2-4 all show a structure with each vanadium atom being η(2) bonded to the β-diketiminate framework and η(6) bonded to a flanking ring of a β-diketiminato ligand, attached to the other vanadium centre within the dimer. No metal-metal bonding interactions are observed in these dimers due to long vanadium-vanadium separations. Compounds 2-4 display an antiferromagnetic exchange between the two vanadium centres. An imido azabutadienyl complex (η(2)-PhCC(H)C(Ph)NC(6)H(3)-2,6-(i)Pr(2))VN(C(6)H(3)-2,6-(i)Pr(2))(OEt(2)) (5) was isolated from the reduction of VCl(2)(HC(C(Ph)NC(6)H(3)-2,6-(i)Pr(2))(2)) by KC(8). Compounds 2-4 and the inverted-sandwich divanadium complex (μ-η(6):η(6)-C(6)H(5)Me)[V(HC(C(Me)NC(6)H(3)-2,6-(i)Pr(2))(2))](2) (1) reduce Ph(2)S(2) to give two vanadium dithiolates V(SPh)(2)[(HC(C(Me)NC(6)H(3)-2,6-R(2))(2))] (R = Et (6), (i)Pr (7)) through an oxidative addition. Most notably, 1 and 3 catalyze the cyclotrimerization of alkynes, giving tri-substituted benzenes in good yields and a 1,3,5-triphenylbenzene coordinated intermediate 8 was isolated and characterized.  相似文献   

19.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

20.
The reaction of Mo(VI)O(2)(L-NS(2)) [L-NS(2) = 2,6-bis(2,2-diphenyl-2-thioethyl)pyridinate(2-)] or Mo(V)(2)O(3)(L-NS(2))(2) with excess PPh(3) in N,N-dimethylformamide at 70 degrees C results in the formation of gray-green (L-NOS)Mo(IV)(mu-O)(mu-S)Mo(IV)(L-NS(2)) [L-NOS = 2-(2,2-diphenyl-2-thioethyl)-6-(2,2-diphenyl-2-oxoethyl)pyridinate(2-)] (1). The crystal structure of 1 revealed a dinuclear complex comprised of two trigonal bipyramidal Mo centers bridged along an axial-equatorial edge (the mu-O-mu-S vector) such that the Mo-N bonds are trans to the bridging atoms and are anti with respect to the Mo-Mo bond (d(Mo-Mo) = 2.5535(5) A); the remaining coordination sites are occupied by the S- and O-donor atoms of the L-NOS and L-NS(2) ligands. The diamond core is asymmetric, with Mo(1/2)-O(1) distances of 1.845(2) and 2.009(2) A and Mo(1/2)-S(1) distances of 2.374(1) and 2.230(1) A. Compound 1 is unique in possessing a planar, diamond-core unit devoid of terminal oxo ligation and a new tridentate L-NOS ligand formed via a novel intramolecular modification of the original L-NS(2) ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号