首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
The merging of photoredox and transition‐metal catalysis has become one of the most attractive approaches for carbon–carbon bond formation. Such reactions require the use of two organo‐transition‐metal species, one of which acts as a photosensitizer and the other one as a cross‐coupling catalyst. We report herein an exogenous‐photosensitizer‐free photocatalytic process for the formation of carbon–carbon bonds by direct acceleration of the well‐known nickel‐catalyzed Negishi cross‐coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross‐coupling chemistry that involve the direct visible‐light absorption of organometallic catalytic complexes.  相似文献   

2.
Novel π‐conjugated coil–rod–coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self‐assemble into diverse aggregating morphologies including spherical micelles and thin‐layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self‐assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.

  相似文献   


3.
4.
Ethylene (E) and norbornene (N) were copolymerized in the presence of PhSiH3 as chain‐transfer agent with [Ti(η5:η1‐C5Me4SiMe2NBut)(η1‐Me)2] precatalyst combined with [Ph3C][B(C6F5)4]. The silane was introduced at chain‐ends of E‐co‐N copolymers with concomitant reinitiation of the growing polymer chain. The concentrations of the silane and polymer molecular weight are inversely correlated. The characteristic signals of  SiH2Ph chain‐ends were observed by 1H NMR. The Si heteroatom is predominantly adjacent to ethylene units in E‐co‐N copolymers with high N content.

  相似文献   


5.
6.
We present terminal deoxynucleotidyl transferase‐catalyzed enzymatic polymerization (TcEP) for the template‐free synthesis of high‐molecular‐weight, single‐stranded DNA (ssDNA) and demonstrate that it proceeds by a living chain‐growth polycondensation mechanism. We show that the molecular weight of the reaction products is nearly monodisperse, and can be manipulated by the feed ratio of nucleotide (monomer) to oligonucleotide (initiator), as typically observed for living polymerization reactions. Understanding the synthesis mechanism and the reaction kinetics enables the rational, template‐free synthesis of ssDNA that can be used for a range of biomedical and nanotechnology applications.  相似文献   

7.
Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man‐made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through photochemical cofactor regeneration. Herein, we report, for the first time, on nanobiocatalytic artificial photosynthesis in near‐infrared (NIR) light, which constitutes over 46% of the solar energy. For NIR‐light‐driven photoenzymatic synthesis, we synthesized silica‐coated upconversion nanoparticles, Si‐NaYF4:Yb,Er and Si‐NaYF4:Yb,Tm, for efficient photon‐conversion through Förster resonance energy transfer (FRET) with rose bengal (RB), a photosensitizer. We observed NIR‐induced electron transfer by using linear sweep voltammetric analysis; this indicates that photoexcited electrons of RB/Si‐NaYF4:Yb,Er are transferred to NAD+ through a Rh‐based electron mediator. RB/Si‐NaYF4:Yb,Er nanoparticles, which exhibit higher FRET efficiency due to more spectral overlap than RB/Si‐NaYF4:Yb,Tm, perform much better in the photoenzymatic conversion.  相似文献   

8.
9.
10.
Efficient cleaving of DNA oligonucleotides by a water‐soluble fullerene main‐chain polymer is demonstrated following a facile routine of monitoring the reaction by UV‐vis spectroscopy and separating the cleaved fractions by membrane filtration. A small quantity of the fullerene derivative could cleave a large excess of the oligonucleotide under ambient light conditions, leading to cleaved DNA in quantitative yields.  相似文献   

11.
The ethyl 1,4‐dihydro‐4‐oxo‐3‐quinolinecarboxylate ring structure, important in several drug compounds, has been prepared in two steps from ethyl 2‐(2‐fluorobenzoyl)acetate. Treatment of this β‐ketoester with N,N‐dimethylformamide dimethyl acetal gives a 97% yield of the 2‐dimethylaminomethylene derivative. Reaction of this β‐enaminone with primary amines in N,N‐dimethylformamide at 140°C for 48 h then affords the 1,4‐dihydro‐4‐oxo‐3‐quinolinecarboxylate esters in 60–74% yields by a tandem addition‐elimination‐SNAr reaction. The synthesis of the starting material as well as procedural details and a mechanistic scenario are presented. J. Heterocyclic Chem., (2011).  相似文献   

12.
13.
The unprecedented phospha‐aza‐Diels–Alder reaction between an activated electron‐poor imine and 2H‐phospholes yields 1‐phospha‐2‐azanorbornenes in a highly chemoselective and moderately diastereoselective reaction. The intermediate 2H‐phospholes, which act as dienes, are formed in situ from the corresponding 1H‐phospholes. Theoretical calculations confirm that the phospha‐aza‐Diels–Alder reaction is of normal electron demand. The reactive P?N bond in 1‐phospha‐2‐azanorbornenes can be cleaved by nucleophiles leading to the formation of 2,3‐dihydrophospholes.  相似文献   

14.
王科  李晋峰  袁承业  李祖义 《中国化学》2002,20(11):1379-1387
Introduction  Baker’syeast (Saccharomycescerevisiae)iswellrecognizedasavaluablestereoselectivereagentinbio transformationsoforganicmolecules .Theasymmetricre ductionofcarbonylgroupswiththismicrobehasbeenstudiedextensively .Moreover,inthecourseofreductiono…  相似文献   

15.
A series of N‐substituted 1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylate esters has been prepared in two steps from ethyl 2‐(2‐chloronicotinoyl)acetate. Treatment of the β‐ketoester with N,N‐dimethylformamide dimethyl acetal in N,N‐dimethylformamide (DMF) gave a 95% yield of the 2‐dimethylaminomethylene derivative. Subsequent reaction of this β‐enaminone with primary amines in DMF at 120oC for 24 h then afforded the target compounds in 47–82% yields by a tandem SNAr‐addition‐elimination reaction. Synthetic and procedural details as well as a mechanistic rationale are presented.  相似文献   

16.
A new MgII‐based version of the porous coordination polymer CUK‐1 with one‐dimensional pore structure was prepared by microwave synthesis in water. Mg‐CUK‐1 is moisture‐stable, thermally stable up to 500 °C, and shows unusual reversible soft‐crystal behavior: dehydrated single crystals of the material selectively adsorb a range of organic molecules at ambient temperature and pressure. Both polar and apolar aromatic compounds, including pyridine, benzene, p‐xylene, and p‐divinylbenzene (p‐DVB), are all readily adsorbed, while other isomers from complex mixtures of xylenes or DVBs are selectively excluded. The solvent‐loaded structures have been studied by single‐crystal X‐ray diffraction. Time‐dependent liquid sorption experiments using commercially available DVB demonstrate a high and rapid selective adsorption of p‐DVB and exclusion of m‐DVB and ethylvinylbenzene isomers.  相似文献   

17.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

18.
19.
We report on a fast and simple method to produce highly stable isopropanol/water (4:1) suspensions of few‐layer antimonene by liquid‐phase exfoliation of antimony crystals in a process that is assisted by sonication but does not require the addition of any surfactant. This straightforward method generates dispersions of few‐layer antimonene suitable for on‐surface isolation. Analysis by atomic force microscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy confirmed the formation of high‐quality few‐layer antimonene nanosheets with large lateral dimensions. These nanolayers are extremely stable under ambient conditions. Their Raman signals are strongly thickness‐dependent, which was rationalized by means of density functional theory calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号