首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文用量子化学密度泛函方法对C3H2 (环丙烯基自由基)与O(3P)反应的机理进行了理论研究。在B3LYP/6-311++G**计算水平上优化了各驻点(过渡态,中间体,产物)的几何结构,在QCISD(T)/6-311++G**水平下计算了各物质的单点能量,在两种水平下计算了298K和600K时的能量。计算结果表明:C3H2 + O(3P) 反应可以生成P1 (C2H +HCO),P2 (C2H2 + CO) 和P3 (HC3O+H)三种产物。生成P1反应通道的能垒最低,即P1为主要产物,与实验的结果一致。产物P1可以通过路径:R→ IM1→ IM2→ P1获得。本文详细地讨论了C3H2 + O(3P) 的反应机理,并从理论上对实验结果进行了验证。研究结果有助于深入理解C3H2 + O(3P)反应机理以及C3H2在大气中的燃烧过程。  相似文献   

2.
在QCISD(T)/6-311++G(d,p)//B3LYP/6-311G(d,p)的水平下计算了乙醇及乙醇燃烧裂解产物与C2H3之间的脱氢反应机理,利用正则变分过渡态理论(CVT)结合小曲率隧道效应模型(SCT)计算400~2000 K范围内的速率,对比OH,H及CH3等自由基相似脱氢反应速率,选择2条具有较快反应速率的通道(C2H3+C2H5OH→TS1→C2H4+C2H5O和C2H3+CH3HCO→TS4→C2H4+CH3CO).将这2个反应耦合到正庚烷/乙醇混合燃料及异辛烷/乙醇混合燃料的机理中,利用CHEMKIN程序中预混火焰模型模拟混合燃料的燃烧过程并进行路径分析.对比相应的实验数据发现,改进的动力学模型对燃烧过程中C2H3路径上相近组分的预测精度有较大改善,而对C2H3路径上较远的组分丙炔(C3H4)和乙烯基乙炔(C4H4)等影响不大.  相似文献   

3.
C2H3是一个不饱和自由基及烃类化合物燃烧过程中的重要中间体,它的基元反应是影响燃烧过程速率和最终产物的重要反应.已有人在实验和理论方面研究了C2H3和O2,H2等体系[1-12]的基元反应,但迄今为止,我们还没有看到对于C2H3+NO体系的研究报导.本文报导了用时间分辨傅立叶变换红外发射光谱(TR-FTIR)研究C2H3+NO基元反应的结果.1实验  C2H3自由基是在248nm(KrF激光,Lambda,Physik,LPX305i,单脉冲能量约为110mJ)光解C2H3Br产生的.时间分辨傅立叶变换红外发射光谱(FTIR)方法在我们以前的文章中已有介绍[13].实验…  相似文献   

4.
将六水氯化钐,水杨酸与硫代脯氨酸3种物质一起反应,制得了一种新的稀土三元固体配合物[Sm(C7H5O3)2(C4H6NO2S)].2H2O(s)。通过红外光谱、热重差热分析、元素分析等手段确定了其结构与组成。在常压、298.15 K下,分别测定了六水氯化钐、水杨酸、硫代脯氨酸和该配合物在混合溶剂(二甲亚砜∶乙醇∶3 mol.L-1HCl=1∶1∶1)中的溶解焓,并根据热化学原理得出了298.15 K时配合物[Sm(C7H5O3)2(C4H6NO2S)].2H2O(s)的标准摩尔生成焓ΔfHmΘ=(-2913.73±3.10)kJ.mol^-1。  相似文献   

5.
以PU改性乙烯基树脂(polyurethane/vinyl ester resin,PU/VER)为研究对象,通过反应分子动力学(reactive force field,Reax FF)力场仿真分析,从原子层面揭示其在不同反应温度下的高温裂解微观特性.对含有1395个原子的体系进行仿真计算,该体系以不同的速度升温至2800~4800 K的反应温度.结果表明,PU改性所产生的O—O键最先断裂,将含C—N键的支链部分与主链分开;主链中氧桥键O—C在支链上C—N键断裂之后发生的断裂是乙烯基树脂主链断裂的主要原因,由此引发的链式反应最终导致高分子链解聚;位于主链端部的乙烯基(H2C=CH—)由于碳碳双键的解离能较高,其在3种主要的热解产物H2、CO2和C2H2的生成过程中均有参与.本文采用Reax FF动力学方法模拟得到的小分子气体产物及其生成路径与实际试验结果相一致,这说明Reax FF动力学方法是一种阐释有机高分子化合物热解化学反应机理的有效方法.  相似文献   

6.
Three novel compounds, [Co(en)3]2[Zr2(C2O4)7]·2H20(HNU-2, en=ethylenediamine), [Co(NH3)6]· [Ce(CzO4)3(H2O)]·H2O(HNU-3) and [Co(dien)2][Gd(C2On)3]·0.75H2O(HNU-4, dien=dethylenetriamine) were hydro- thermal synthesized based on the templates of [Co(en)3]C13, [C0(NH3)6]C13 and [Co(dien)2]C13, respectively. The Zr4+ Ce3+ and Gd3+ cations are all coordinated by four oxalates to form [M(C2O4)n(H2O)n]m (M=Zr, Ce or Gd; n=0 or 1; m=4 or 5), which are similar to [In(C2O4)4]5- in NKB-1, and can be regarded as 4-connected building units. The [M(C2O4)a(H2O)n]m units are connected via sharing the bis-bidentate bridging oxalate ligands to form binuclears in HNU-2 and 1D "zigzag" chains in HNU-3 and HNU-4. cular building units to design 3D open frameworks with It is suggested that these compounds could be used as mole- zeolite topologies.  相似文献   

7.
The imidazole covalently coordinated sandwich-type heteropolymngstates Na9[ {Na(H=O2}3{M(C3H4N2)}3( Sb W9O33)2]·xH=O(M=Ni^Ⅱ, Co^Ⅱ, Zn^Ⅱ, Mn^Ⅱ) were obtained by the reaction of Na2WO4·2H2O, SbCl3·6H2O, NiCl2·6H2O [MnSO4·H2O, Co(NO3)2·6H2O, ZnSO4·7H2O] and imidazole at pH≈7.5. The structure of Na9[{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2]·32H2O was determined by single crystal X-ray diffraction. Polyanion [{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2}3]^9- has approximate C3v symmetry, imidazole coordinated six-nuclear duster [{Na(H2O)2}3{Ni(C3H4N2)}3]^9+ is encapsulated between two (α-SbW9O33)^9-, the three rings of imidazole in the polyanion are perpendicular to the horizontal plane formed by six metals (Na-Ni-Na-Ni-Na-Ni) in the central belt, and x-stacking interactions exist between imidazoles of neighboring polyanions with dihedral angel of 60%. The compounds were also characterized by IR, UV-Vis spectra, TG and DSC, and the thermal decomposition mechanism of the four compounds was suggested by TG curves.  相似文献   

8.
为了在分子层次上揭示相关催化反应的机理,人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究.相比于过渡金属氧化物团簇阳离子,阴离子对一些碳氢化合物的活性弱得多,因此研究还很少.在本工作中,我们通过激光溅射产生钒氧团簇阴离子VxOy-,产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6)在一个快速流动反应管中进行反应,飞行时间质谱用来检测反应前后的团簇分布.在VxOy-与烷烃的反应中,生成了产物V2O6H-和V4O11H-;在与烯烃的反应中,产生了相应的吸附产物V4O11X-(X=C2H4或C3H6).密度泛函理论计算表明:V2O6-和V4O1-1可以活化烷烃(C2H6和C4H10)的C-H键,也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-),C-H键活化与环加成反应都需经历可以克服的反应能垒.理论计算与实验观测结果相符合.V2O6-和V4O1-1团簇都具有氧原子自由基(O·或O-)的成键特征,活性O-物种也经常出现在钒氧催化剂表面,因而本研究在分子水平上,揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

9.
采用自旋极化密度泛函理论和周期平板模型,对C2H4在铁基费托合成催化剂活性相之一Fe3C(100)表面从热力学和动力学两个方面分析了C2H4在Fe3C(100)表面进行脱氢和裂解反应的竞争性.结果表明,C2H4在Fe3C(100)表面的μ-bridging吸附比π、di-σ吸附更加稳定;C2H4与Fe3C(100)面的相互作用导致C2H4的C原子部分发生重新杂化(sp2→sp3),使C原子呈近四面体结构.在Fe3C(100)表面C2H4易于发生脱氢反应,C–C键裂解反应不具有竞争性.亚乙烯基CCH2和乙烯基CHCH2是Fe3C(100)表面最丰的C2物种,或是C2H4参与链增长的主要单体形式.  相似文献   

10.
Five novel SrⅡ-LnⅢ heterometallic coordination polymers based on pyridine-2,6- dicarboxylic acid (H2pda) and imidazole (im), namely, [LnSr(pda)3(H2O)5]-Him·C2H5OH·3H2O (Ln = Nd (1); Pr (2)), [Ln2Sr(pda)6(H2O)5]-4Him·C2H5OH·5H2O (Ln = Nd (3); Pr (4)), and [ErSr(pda)3(H2O)4].Him-3.5H2O (5), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display three varieties of l-D chain structures. Several types of hydrogen bonding interactions are found for 1-5, which connect the 1 -D chain structures to form 2-D suoramolecular networks.  相似文献   

11.
In this work, we study the reaction mechanism of the CH2CHX(X?H, F, Cl) with ozone reactions, using ab initio MP2 method at 6‐311++g** basis set level. The geometric configurations of reactants, intermediates, transition states, and products were optimized, and the energies were obtained at the QCISD(T)/6‐311++G** level. The transition states and intermediates of the reactions were verified by the vibrational analysis. The results show that the ozonolysis of ethylene and its derivatives is reasonable and believable along the Criegee mechanism. The results also show that the activation energies of the controlling steps along the fluoroethylene and chloroethylene with ozone reaction pathways were lower than that along the ethylene with ozone reaction pathway. That is to say, the derivatives of ethylene have the higher activity to react with ozone and deplete the ozone layer. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

12.
We report a theoretical study on the reaction of ozone with hydroxyl radical, which is important in the chemistry of the atmosphere and in particular participates in stratospheric ozone destruction. The reaction is a complex process that involves, in the first stage, a pre-reactive hydrogen-bonded complex (C1), which is formed previous to two transition states (TS1 and TS2) involving the addition of the hydroxyl radical to ozone, and leads to the formation of HO4 polyoxide radical before the release of the products HO2 and O2. The reaction is computed to be exothermic by 42.72 kcal mol(-1), which compares quite well with the experimental estimate, and the energy barriers of TS1 and TS2 with respect to C1 are computed to be 1.80 and 2.26 kcal mol(-1) at 0 K. A kinetic study based on the variational transition state theory (VTST) predicts a rate constant, at 298 K, of 7.37 x 10(-14) cm3 molecule(-1) s(-1), compared to the experimentally recommended value of 7.25 x 10(-14) cm3 molecule(-1) s(-1).  相似文献   

13.
The reaction dynamics of the boron monoxide radical ((11)BO; X(2)Σ(+)) with ethylene (C(2)H(4); X(1)A(g)) were investigated at a nominal collision energy of 12.2 kJ mol(-1) employing the crossed molecular beam technique and supported by ab initio and statistical (RRKM) calculations. The reaction is governed by indirect scattering dynamics with the boron monoxide radical attacking the carbon-carbon double bond of the ethylene molecule without entrance barrier with the boron atom. This addition leads to a doublet radical intermediate (O(11)BH(2)CCH(2)), which either undergoes unimolecular decomposition through hydrogen atom emission from the C1 atom via a tight transition state located about 13 kJ mol(-1) above the separated products or isomerizes via a hydrogen shift to the O(11)BHCCH(3) radical, which also can lose a hydrogen atom from the C1 atom. Both processes lead eventually to the formation of the vinyl boron monoxide molecule (C(2)H(3)BO; X(1)A'). The overall reaction was determined to be exoergic by about 40 kJ mol(-1). The reaction dynamics are also compared to the isoelectronic ethylene (C(2)H(4); X(1)A(g)) - cyano radical (CN; X(2)Σ(+)) system studied earlier.  相似文献   

14.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

15.
The mechanism for ethylene oligomerization by (acac)NiH has been studied using density functional theory (DFT). The transition states for chain propagation and chain termination were optimized and the related reaction barriers calculated. Several possible mechanisms were considered for the chain termination step. Chain termination by beta-hydrogen elimination was found to be energetically unfavorable, and is not likely to be important. Instead, beta-hydrogen transfer to the incoming ethylene unit seems to be operative. The most favorable beta-hydrogen transfer pathway has two transition states. The first leads from a weak pi-complex between an incoming ethylene unit and (acac)NiCH(2)CH(2)R to an intermediate in which the two olefins C(2)H(4) and H(2)CCHR both are strongly pi-complexed to the nickel hydride (acac)NiH. The second barrier takes the intermediate to another weak pi-complex between (acac)NiCH(2)CH(3) and H(2)C=CHR from which the oligomer H(2)C=CHR can be released and the catalyst (acac)NiCH(2)CH(3) regenerated. Due to the mechanism of chain termination, the actual catalyst is proposed to be (acac)NiCH(2)CH(3) whereas (acac)NiH serves as a precursor or precatalyst.  相似文献   

16.
三氟化氯和环氧丙烷反应的理论研究   总被引:2,自引:0,他引:2  
应用密度泛函理论对三氟化氯和环氧丙烷反应产生C3H5O和C1F2自由基的机理进行了研究。在B3PW91/6-31+G(d,p)水平优化了12个不同反应通道上各驻点(反应物、中间体、过渡态和产物) 的几何构型,并计算了它们的振动频率和零点振动能。采用CCSD(T)/6-31+ G(d,p) // B3PW91/6-31+G(d,p)单点能计算方法求得各物种的能量,并作了零点能校正。计算结果表明,三氟化氯和环氧丙烷反应可经过不同的反应路径引发C3H5O自由基和C1F2自由基,其中,三氟化氯呈对称的F原子与环氧丙烷的C(1)上与CH3在同一侧的上的H原子结合的活化能最低,仅为16.81 kJ/mol。  相似文献   

17.
This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.  相似文献   

18.
李来才  邹勤  田安民 《化学学报》2003,61(10):1524-1527
用量化学UMP2方法,在6-311++G**基组水平上研究了CH_2X(X=H,FCI)与臭氧反 应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的内何构型,在 UQCISD(T)/6-311++G**水平上计算了它们的能量,并对它们进行了振动分析,以 确定中间体和过渡态的直实性。从CH_2X(X=H,FCI)与O_3的反应机理的研究结果看 ,它们与O_3反应的活性都比较强,相对而言,活性大小顺序为CH_2F>CH_3> CH_2CI,也就是说,CH_2F自由基与臭氧间的反应活性最强,对大气臭氧的损耗将 是最大的。同时研究还发现CH_2X(X=H,FCI)系列自由基与O_3的反应都是强放热反 应。  相似文献   

19.
The crossed beam reactions of the methylidyne radical with ethylene (CH(X(2)Π) + C(2)H(4)(X(1)A(1g))), methylidyne with D4-ethylene (CH(X(2)Π) + C(2)D(4)(X(1)A(1g))), and D1-methylidyne with ethylene (CD(X(2)Π) + C(2)H(4)(X(1)A(1g))) were conducted at nominal collision energies of 17-18 kJ mol(-1) to untangle the chemical dynamics involved in the formation of distinct C(3)H(4) isomers methylacetylene (CH(3)CCH), allene (H(2)CCCH(2)), and cyclopropene (c-C(3)H(4)) via C(3)H(5) intermediates. By tracing the atomic hydrogen and deuterium loss pathways, our experimental data suggest indirect scattering dynamics and an initial addition of the (D1)-methylidyne radical to the carbon-carbon double bond of the (D4)-ethylene reactant forming a cyclopropyl radical intermediate (c-C(3)H(5)/c-C(3)D(4)H/c-C(3)H(4)D). The latter was found to ring-open to the allyl radical (H(2)CCHCH(2)/D(2)CCHCD(2)/H(2)CCDCH(2)). This intermediate was found to be long lived with life times of at least five times its rotational period and decomposed via atomic hydrogen/deuterium loss from the central carbon atom (C2) to form allene via a rather loose exit transition state in an overall strongly exoergic reaction. Based on the experiments with partially deuterated reactants, no compelling evidence could be provided to support the formation of the cyclopropene and methylacetylene isomers under single collision conditions. Likewise, hydrogen/deuterium shifts in the allyl radical intermediates or an initial insertion of the (D1)-methylidyne radical into the carbon-hydrogen/deuterium bond of the (D4)-ethylene reactant were found to be-if at all-of minor importance. Our experiments propose that in hydrocarbon-rich atmospheres of planets and their moons such as Saturn's satellite Titan, the reaction of methylidyne radicals should lead predominantly to the hitherto elusive allene molecule in these reducing environments.  相似文献   

20.
The reaction dynamics of phenyl radicals (C6H5) with ethylene (C2H4) and D4-ethylene (C2D4) were investigated at two collision energies of 83.6 and 105.3 kJ mol-1 utilizing a crossed molecular beam setup. The experiments suggested that the reaction followed indirect scattering dynamics via complex formation and was initiated by an addition of the phenyl radical to the carbon-carbon double bond of the ethylene molecule forming a C6H5CH2CH2 radical intermediate. Under single collision conditions, this short-lived transient species was found to undergo unimolecular decomposition via atomic hydrogen loss through a tight exit transitions state to synthesize the styrene molecule (C6H5C2H3). Experiments with D4-ethylene verified that in the corresponding reaction with ethylene the hydrogen atom was truly emitted from the ethylene unit but not from the phenyl moiety. The overall reaction to form styrene plus atomic hydrogen from the reactants was found to be exoergic by 25 +/- 12 kJ mol(-1). This study provides solid evidence that in combustion flames the styrene molecule, a crucial precursor to form polycyclic aromatic hydrocarbons (PAHs), can be formed within a single neutral-neutral collision, a long-standing theoretical prediction which has remained to be confirmed by laboratory experiments under well-defined single collision conditions for the last 50 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号