首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
用Nafion将单壁碳纳米管(SWCNT)固定到玻碳电极(GCE)上,再利用电化学聚合方法将L-白氨酸(L-LEU)聚合到SWCNT/GCE上,制备得到poly L-LEU/SWCNT/GCE修饰电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)和电化学交流阻抗法(EIS)研究了对苯二酚(HQ)、邻苯二酚(CC)共存时,二者在修饰电极上的电化学行为。结果表明:此修饰电极对HQ和CC有很好的电催化和分离作用。二者在修饰电极上的氧化还原峰电流与GCE相比显著增强,HQ和CC的氧化峰电位差和还原峰电位差分别为124 mV和131 mV。HQ和CC的检测线性范围分别为2.0×10-7~1.0×10-4、5.0×10-7~1.0×10-4mol/L。检出限分别为8.0×10-8、1.0×10-7mol/L。制备的修饰电极重现性、稳定性良好。在模拟废水中采用该修饰电极对HQ和CC进行检测,结果满意。  相似文献   

2.
运用循环伏安法(CV),计时库仑法(CC),计时电流法(CA)研究了萘乙酸(NAA)在玻碳电极(GCE),多壁碳纳米管修饰玻碳电极(MWCNTs/GCE)和多壁碳纳米管-离子液体修饰玻碳电极(MWCNTs-IL/GCE)上的电化学行为及电化学动力学性质.实验结果表明,NAA在GCE电极上于1.00V附近有一不可逆氧化峰...  相似文献   

3.
制备了聚多巴胺-还原氧化石墨烯修饰玻碳电极(PDA-rGO/GCE),以此修饰电极作为工作电极,采用循环伏安法(CV)对邻苯二酚(CC)和对苯二酚(HQ)的电化学行为进行了研究。结果表明CC和HQ在该修饰电极上的峰电流与氧化石墨烯修饰电极相比有了明显增高,并且它们的氧化峰电位差和还原峰电位差均超过110 mV,证明该修饰电极用于两种酚的同时检测是可行的。在优化实验条件下,采用微分脉冲伏安法(DPV)对CC和HQ同时进行检测,CC和HQ的峰电流与其浓度均在1.0×10~(-6)~4.0×10~(-3) mol/L范围内呈良好的线性关系,检出限(S/N=3)分别为2.0×10~(-7) mol/L和3.6×10~(-7) mol/L。以所制备的修饰电极对自来水水样和湖水水样进行了加标回收检测,回收率在97.6%~100.6%范围内。  相似文献   

4.
本文制备了聚苯胺-石墨烯修饰玻碳电极,并用循环伏安(CV)法和微分脉冲伏安(DPV)法研究了邻苯二酚(CC)和对苯二酚(HQ)在该修饰电极上的电化学行为。实验结果表明,相对于裸玻碳电极,HQ和CC在聚苯胺-石墨烯修饰电极上的氧化峰电流显著提高,氧化峰电位相差104.8mV,实现了CC和HQ的选择性测定。DPV法同时测定二酚时,HQ和CC分别在1.0×10-6~8.0×10-4 mol/L浓度范围内与其峰电流呈良好的线性关系,相关系数R分别为0.998、0.997,检出限(S/N=3)分别为1.0×10-7、8.0×10-8mol/L。将该方法用于模拟水样分析,回收率为95.3%~103.5%。  相似文献   

5.
石墨烯的制备及石墨烯修饰电极对p-苯二酚的催化氧化   总被引:1,自引:0,他引:1  
采用氨水还原氧化石墨烯(GO)制备石墨烯(GN), 并考察石墨烯修饰玻碳电极(GN/GCE)电催化氧化p-苯二酚(HQ)的性能. 利用傅里叶红外光谱(FTIR)、拉曼光谱(Raman)、X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、比表面分析(BET)和电分析化学测试等技术对GN结构、表面形貌和电化学行为进行了表征. 采用循环伏安法(CV)和差分脉冲溶出伏安法(DPV)研究GN/GCE对HQ的电催化氧化性能. 结果表明, 与裸玻碳电极(GCE)相比, [Fe(CN)6]3-/4-在GN/GCE上电荷转移电阻为75.0 Ω·cm2, 减小约9倍, 说明GN具有良好导电性; 同时HQ在GN/GCE上氧化峰电位负移, 还原峰电位正移, 峰电位差ΔEp减小165 mV, 且氧化还原峰电流(Ipa和Ipc)均增大, HQ电化学氧化可逆性明显改善, 表明GN/GCE对HQ氧化具有显著电催化作用.  相似文献   

6.
聚5-磺基水杨酸修饰电极上对苯二酚的电化学行为   总被引:13,自引:0,他引:13  
用循环伏安法将 5 磺基水杨酸修饰于玻碳电极表面 ,制备出对对苯二酚具有电催化作用的聚合物膜修饰电极。研究了对苯二酚 (HQ)在该聚合物薄膜修饰电极上的电化学行为。在 0 5mmol/LH2 SO4底液中 ,HQ在该电极上的线性范围为 2 0× 1 0 - 6~ 1 0× 1 0 - 4 mol/L。该修饰电极可将对苯二酚和邻苯二酚(CC)的氧化峰分开约 1 0 5mV  相似文献   

7.
杨波  胡芳弟  魏金萍  王春明 《化学学报》2009,67(22):2585-2591
<研究了黄芩素(baicalein, 缩写BAI)在玻碳电极(GCE)与聚-L-赖氨酸修饰的玻碳电极(PLL/GCE)上的电化学行为. 发现BAI不能在裸玻碳电极上产生明显的氧化还原信号, 但在PLL/GCE上有一对可逆性较好的氧化还原峰出现. 在最佳实验条件下, 氧化峰电流与BAI的浓度在5.0×10-7~1.0×10-5 mol/L范围内呈良好的线性关系, 相关系数R为0.998, BAI检测限为4.8×10-8 mol/L(信号与噪声比S/N=3). 配10份相同浓度溶液, 每次测定后需重新修饰电极, 连续测定10次, 所得结果的相对标准偏差(RSD)为4.3%, 平均峰电流为1.48 μA. 这表明修饰电极具有良好的重现性. 将该方法用于BAI在尿样中的回收率分析, 结果令人满意.  相似文献   

8.
制备了甘氨酸-壳聚糖复合膜修饰玻碳电极(Gly-CTS/GCE),研究了抗坏血酸(AA)和尿酸(UA)在该修饰电极上的电化学行为。结果表明在pH=5.59的磷酸盐缓冲溶液中,AA、UA在Gly-CTS/GCE上均产生灵敏的不可逆氧化峰,其峰电流与浓度在一定范围内呈良好的线性关系。对AA和UA混合溶液平行测定7次,相对标准偏差分别为4.6%、2.9%,表明该电极重现性和稳定性良好。AA、UA在Gly-CTS/GCE电极上的氧化峰峰电位相差340mV,据此可实现对二者的同时检测,并可应用于实际样品测定。  相似文献   

9.
制备了介孔炭/纳米金修饰玻碳电极,并对对苯二酚(HQ)在该修饰电极上的电化学行为进行了研究。与HQ在纯介孔炭材料修饰玻碳电极上的电化学响应相比,HQ在该修饰电极上的氧化峰和还原峰电流均大大增加,表明纳米金与介孔炭复合后对HQ具有良好的催化作用。HQ在该修饰电极上经过富集后,峰电流明显增大。采用循环伏安法对HQ电化学行为进行研究,结果表明,HQ在3.0×10-8~1.0×10-6mol/L和1.0×10-6~1.0×10-4mol/L浓度范围内与峰电流呈良好的线性关系,据此建立了检测HQ的电化学分析方法。该方法的相对标准偏差为0.69%,检出限(S/N=3)为1.0×10-8mol/L,具有较高的稳定性和灵敏度。  相似文献   

10.
制备了多壁碳纳米管(MWNT)修饰玻碳电极,并研究了咖啡酸在该电极上的电化学行为及其测定方法,与裸玻碳电极(GCE)相比,MWNT膜修饰电极(MWNT/GCE)能显著提高咖啡酸的氧化峰电流.在pH=3.29的B-R缓冲溶液中,咖啡酸在MWNT/GCE电极上出现1对准可逆的氧化还原峰,Epa=0.47 V,Epc=0.32 V,峰电流与其浓度在5.0×10-7~2.0×10-5 mol/L范围内成线性关系,检出限为5.0×10-7mol/L.实际样品测定的相对标准偏差(RSD)为0.82%(n=5),平均回收率为100.7%.MWNT膜对咖啡酸的电化学氧化有明显的催化作用.该法是一种快捷、可靠、灵敏的检测方法,可以用于咖啡酸含量的测定.  相似文献   

11.
12.
13.
14.
15.
A low barrier in the reaction pathway between the double Rydberg isomer of OH(3) (-) and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH(4) (-). Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH(3) (-) DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O(2)H(5) (-) species. Three O(2)H(5) (-) minima with H(-)(H(2)O)(2), hydrogen-bridged, and DRA-molecule structures resemble previously discovered N(2)H(7) (-) species and have well separated VEDEs that may be observable in anion photoelectron spectra.  相似文献   

16.
17.
18.
Summary Dichlorobis(methylsalicylato)titanium(IV) reacts with potassium or amine salts of dialkyl or diaryl dithiocarbamates in 11 and 12 molar ratios in anhydrous benzene (room temperature) or in boiling CH2Cl2 to yield mixed ligand complexes: (AcOC6H4O)2 Ti(S2CNR2)Cl (1) and (AcOC6H4O)2 Ti(S2CNR2)2 (2), R=Et, n-Pr, n-Bu, cyclo-C4H8 and cyclo-C5H10. These compounds are moisture sensitive and highly soluble in polar solvents. Molecular weight measurement in conjunction with i.r.,1H and13C n.m.r. spectral studies suggest coordination number 7 and 8 around titanium(IV) in (1) and (2) respectively.  相似文献   

19.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

20.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号