首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel epoxy‐clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T‐403), primary polyethertriamine (Jeffamine T‐5000) and three types of polyoxypropylene diamine (Jeffamine D‐230, D‐400, D‐2000) with different molecular weight were used to treat Na‐montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X‐ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine‐MMT intercalates. Jeffamine D‐230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy‐clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000‐MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5 nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140 nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three‐fold increase in the energy required for breaking the test specimen was found for T5000‐MMT/epoxy containing 7 wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We synthesized organosoluble, thermoplastic elastomer/clay nanocomposites by making a jelly like solution of ethylene vinyl acetate containing 28% vinyl acetate (EVA‐28) and blending it with organomodified montmorillonite. Sodium montmorillonite (Na+‐MMT) was made organophilic by the intercalation of dodecyl ammonium ions. X‐ray diffraction patterns of Na+‐MMT and its corresponding organomodified dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) showed an increase in the interlayer spacing from 11.94 to 15.78 Å. However, X‐ray diffraction patterns of the thermoplastic elastomer and its hybrids with organomodified clay contents up to 6 wt % exhibited the disappearance of basal reflection peaks within an angle range of 3–10°, supporting the formation of a delaminated configuration. A hybrid containing 8 wt % 12Me‐MMT revealed a small hump within an angle range of 5–6° because of the aggregation of silicate layers in the EVA‐28 matrix. A transmission electron microscopy image of the same hybrid showed 3–5‐nm 12Me‐MMT particles dispersed in the thermoplastic elastomer matrix; that is, it led to the formation of nanocomposites or molecular‐level composites with a delaminated configuration. The formation of nanocomposites was reflected through the unexpected improvement of thermal and mechanical properties; for example, the tensile strength of a nanocomposite containing only 4 wt % organophilic clay was doubled in comparison with that of pure EVA‐28, and the thermal stability of the same nanocomposite was higher by about 34 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2065–2072, 2002  相似文献   

3.
Exfoliation through an ionic exchange reaction of layered silicate clays, including synthetic fluorinated mica (Mica) and natural montmorillonite (MMT), were achieved by using polyvalent amine salts as the intercalating agents. The requisite polyamine was synthesized from the epoxy/amine coupling reaction, involving a trifunctional poly(oxypropylene)-triamine (ca. 440 g/mol Mw) and diglycidyl ether of bisphenol-A. The polyamine was a mixture of oligomeric adducts consisting of multiple amine functionalities and a branched backbone. Partial acidification by HCl addition generated a series of amine salts that affected the intercalation and the expansion of the silicate interlayer in the range of 15.2-60.0 Å XRD d spacing. At the specific acidified ratio (H+/amine = 1/3 equiv ratio), the polyamine salts rendered the clay’s layered structure into randomization. The result was confirmed by using XRD and transmission electronic microscopy (TEM). The hybrids of polyamines and Mica or MMT were blended into epoxy resins and cured into nanocomposites, which exhibited the improvements of thermal stability and hardness.  相似文献   

4.
The poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposite was prepared by emulsifier-free emulsion technique and its structure and properties were characterized with infra red, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and cone calorimetry. The highly exfoliated MMT layers with dimension 1-2 nm in thickness were randomly dispersed in the polymer matrix containing MMT lower than 5% w/v, whereas the intercalated structure was predominant with MMT content higher than 5% w/v. Consequently, the fine dispersion of the MMT and the strong interactions between PMMA and MMT created significant improvement of the thermo-stability and fire retardancy of the nanocomposite. The combustion behavior has been evaluated using oxygen consumption cone calorimetry. In addition, a scheme was proposed to describe fire retardancy of PMMA and MMT as well as the correlation between the interaction and structure in polymer/clay systems. The biodegradability of the nanocomposite fire-retardant was tested for its better commercialization.  相似文献   

5.
Novolac/layered silicate nanocomposites were synthesized by condensation polymerization of phenol and formaldehyde catalyzed by H‐montmorillonite (H‐MMT). Exfoliation of the clay was investigated by X‐ray diffraction and transmission electron microscopy (TEM). It turned out that the intra‐gallery condensation of phenol and formaldehyde played a predominant role in the exfoliation of MMT. Exfoliated clay plates with interlayer spacings of 10–30 nm were dispersed in the matrix uniformly as shown by the TEM micrograph.  相似文献   

6.
采用水热方法,在493 K条件下反应72小时,合成了氟基蒙脱土(F-MMT),在这种F-MMT中,硅酸盐结构中的一些OH-被F-取代。采用溶液插层方法,制备了聚乙烯醇/F-MMT纳米复合材料(PVA/F-MMT)。采用X 射线衍射、扫描电镜和透射电镜对F-MMT 和 PVA/F-MMT纳米复合材料进行了表征;结果表明,片状结构的F-MMT均匀分散于PVA中,形成了层离结构的纳米复合材料。热重分析、力学性能和紫外可见光谱的测试结果表明,在没有牺牲光学性能情况下,PVA/F-MMT纳米复合材料的热稳定性和力学性能都得到了提高。力学和热学性能的提高归功于F-MMT均匀而好的分散于聚合物基体中,以及PVA中的 OH- 和F-MMT 中F-之间强的氢键作用。  相似文献   

7.
CdS nanoparticles were precipitated by the reaction of cadmium acetate with sodium sulphide in the presence of cetyltrimethylammonium (CTA) and deposited on montmorillonite (MMT). The resulting CdS-MMT nanocomposite contained 6 wt.% of CdS and 30 wt.% of CTA. Band-gap energy of CdS was estimated at 2.63±0.09 eV using the Tauc plot. The size of CdS nanoparticles was calculated from the band-gap energy at 5 nm and from the micrographs of transmission electron microscopy (TEM) at 5 nm. Selected area electron diffraction (SAED) recognized the cubic structure of CdS (Hawleite). The dynamic light scattering (DLS) method confirmed that CdS nanoparticles were anchored on the surface of MMT particles. CTA was found to be intercalated into MMT and adsorbed on its external surface. CdS-MMT was used for the photoreduction of carbon dioxide dissolved in NaOH solutions. The yields of originating gas products can be arranged in the order: H(2) ? CH(4) > CO. Amounts of these products were 4-8 folds higher then those obtained with TiO(2) Evonic P25. Hydrogen reduced CO(2) to CO and CH(4).  相似文献   

8.
PBT/organic montmorillonite (MMT) nanocomposites were prepared via melt intercalation and their nanostructure was characterized by means of X‐ray diffraction and transmission electron microscopy. Nanocomposite formation requires sufficiently hydrophobic organically modified layered silicates, as well as the presence of polar interactions between silicate and polymer. Three different alkylammonium surfactants were used to modify MMT. In addition, epoxy resin was added as a third component, and the effects on the intercalation and exfoliation behavior of the PBT nanocomposites were investigated.  相似文献   

9.
In the present study, polypropylene/aluminium trihydroxide/Fe‐montmorillonite (PP/ATH/Fe‐MMT) nanocomposites were prepared by melt‐intercalation method. This was been designed to determine whether the presence of structural iron in the matrix could enhance the thermal stability and flammability of nanocomposites. In order to prove the effect of Fe3+ in the structural silicate layers, samples of PP/ATH and PP/ATH/Na‐MMT (no Fe3+ in structural silicate layers) were prepared under the same conditions. Fe‐MMT and Na‐MMT were modified by cetyltrimethyl ammonium bromide (CTAB). The nanocomposite structures were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) was applied to test the thermal properties of nanocomposites. In addition, the limiting oxygen index (LOI) of PP/ATH/Fe‐MMT nanocomposites was increased, and no dripping phenomenon was found through the UL‐94 vertical burning test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

11.
In this study, we exclusively found that the exfoliated poly(vinyl acetate)‐montmorillonite (PVAc‐MMT) nanocomposite latices could be straightforwardly fabricated by soap‐free emulsion polymerization and cast into a film. The as‐fabricated films were transparent with the exfoliated MMT nanoplatelets in flat form uniformly dispersed in the PVAc matrix. Certain bonding of PVAc matrix to the exfoliated MMT nanoplatlets refrained it from removal by acetone in Soxhlet extraction. Exfoliated MMT nanoplatlets (10 wt %) in the film was able to reduce the water vapor permeability coefficient to only 9% that of the neat PVAc. According to the generalized Nielsen's permeability model for the composites containing impermeable fillers in sheet form, the average aspect ratio of exfoliated MMT platelets was calculated as 327, similar to those directly estimated by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5583–5589, 2007  相似文献   

12.
Polyurethane/montmorillonite (PU/MMT) nanocomposites were prepared via in situ polymerization from highly crystalline poly(butylene succinate)/poly(ethylene glycol) polyols and 4,4-dicyclohexylmethane diisocyanate, using both 1,4-butanediol and 1, 2, or 3 wt.% of a tris(hydroxymethyl)aminomethane-MMT hybrid, as chain extenders. The corresponding nanocomposites were designated PU-1MMT, PU-2MMT and PU-3MMT, respectively. The layered silicates were mostly intercalated in the nanocomposites. The distances between the individual silicate layers in the PU-1MMT and PU-2MMT were in the range of 2-10 nm, while those in the PU-3MMT were only about 2 nm. The inefficient exfoliation of the clay in this system was mainly due to the high crystallinity and polarity of the PBS polyol. There were no significant changes in the thermal properties of the pure PU and PU nanocomposites. However, the tensile modulus and elongation of the PU-2MMT at break were significantly greater than those of the pure PU and PU-3MMT.  相似文献   

13.
Polyaniline (PANI)‐montmorillonite (MMT) nanocomposites were prepared by direct intercalation of aniline molecules into MMT galleries, followed by in situ polymerization within the nano‐interlamellar spaces under solvent‐free conditions. The basal spacing of aniline‐intercalated MMT increased gradually up to 1.5 nm with increasing amounts of aniline loaded. This result suggests that aniline molecules were adsorbed by MMT clay and that intercalated aniline likely located perpendicular to the silicate sheets. After polymerization, X‐ray diffraction and Fourier transform infrared analyses confirmed the successful synthesis of PANI chains between the MMT nano‐interlayers. The scanning electron microscopy images indicated that the surface morphologies of PANI–MMTs were strongly different depending on the PANI content. The electrical conductivities of PANI nanocomposite particles in pressed pellets ranged in the order of between 10?3 and 10?2 S/cm. UV–vis spectroscopy and doping level measurement were further used to discuss the conductivities of nanocomposites. The thermal stabilities of PANI–MMT nanocomposites were examined by using thermogravimetric‐differential thermal analysis and derivative thermogravimetric analysis, and both analyses consequently demonstrated the improved thermal stabilities of the PANI chains in the nanocomposites as compared to pure PANI. The thermal stabilities of resulting nanocomposites were strongly related to the PANI content, which increased as the PANI content decreased in the nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2705–2714, 2005  相似文献   

14.
With the use of high-resolution transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was characterized. Using both imaging theory and experiment, the procedures needed to generate lattice images from MMT were established. These procedures involve careful control of the microscope's objective lens defocus to maximize contrast from features of a certain size, as well as limiting the total dose of electrons received by the sample. Direct images of the MMT lattice were obtained from neat Na+ MMT, organically modified MMT, and organically modified MMT/epoxy nanocomposites. The degree of crystallinity and turbostratic disorder were characterized using electron diffraction and high-resolution electron microscopy (HREM). Also, the extent of the MMT sheets to bend when processed into an epoxy matrix was directly visualized. A minimum radius of curvature tolerable for a single MMT sheet during bending deformation was estimated to be 15 nm, and from this value a critical failure strain of 0.033 was calculated. HREM can be used to improve the understanding of the structure of polymer nanocomposites at the nanometer-length scale.  相似文献   

15.
This article describes the synthesis of modified silica nanoparticles (SiO2-MPTMS) via the condensation reaction carried out between silanol moieties of silica nanoparticles and the trialkoxy silyl groups of (3-mercaptopropyl) trimethoxysilane (MPTMS). Then, SiO2-MPTMS nanoparticles in certain amounts (0.5 wt %, 1 wt %, 2.5 wt % and 5 wt %) were incorporated into thiol-ene resins consisting of bisphenol A glycerolate dimethacrylate and trimethylolpropane tris(3-mercaptopropionate) to prepare nanocomposite films via the photoinitiated thiol-ene polymerization in presence of 2,2-Dimethoxy-2-phenylacetophenone 99% as a photoinitiator. Fourier transform infrared spectroscopy, dynamic light scattering, scanning transmission electron microscopy, thermal gravimetric analyzer, and X-ray photoelectron spectrometer were employed to characterize SiO2-MPTMS nanoparticles. It was revealed that the nanosilica surface was successfully grafted by MPTMS with the grafting ratio of 22.9%. Properties of the nanocomposite films such as decomposition temperature, thermal glass transition temperature, tensile strength, hardness, and particle distribution were investigated and the results were compared with each other and neat film. The addition of MPTMS-modified silica particles did not improve the thermal stability of the films. In scanning electron microscopy study, it was seen that 2.5 wt % of these nanoparticles used as additives were about 200 nm in size and dispersed homogeneously in the polymer matrix. The increase in tensile strength of nanocomposite films compared to the neat film was measured as 77.3% maximum.  相似文献   

16.
李倩  李化毅 《高分子科学》2017,35(7):897-908
Layered materials (MMT,LDH) were successfully modified by chain end functionalized polyethylene via an ion exchange method.The samples were characterized by using elemental analysis,Fourier transform infrared (FTIR) spectrum,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and thermogravimetric analysis (TGA).The XRD results demonstrated that MMT was successfully exfoliated with the disappearance of [001] peak.For the LDH,the peak [003] moved to a low angle and greatly weakened,indicating that LDH was successfully functionalized and completely intercalated or exfoliated.HDPE/layered nanocomposites were obtained between HDPE and different content of functional layered materials.The SEM and TEM results of nanocomposites showed the layered materials were well dispersed in the HDPE matrix,with a particle size of 100-200 nm.  相似文献   

17.
A polystyrene‐modified epoxidized novolac resin/montmorillonite nanocomposite was fabricated and characterized successfully. For this purpose, novolac resin (NR) was epoxidized through the reaction of phenolic hydroxyl group with epichlorohydrin in super basic medium to produce epoxidized novolac resin (ENR). Afterward, a polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique, and then brominated at the benzylic positions using N‐bromosuccinimide (NBS). The brominated polystyrene (PSt‐Br) was reacted with ethanolamine in basic medium in order to afford an amine‐functionalized polystyrene (PSt‐NH2). An organo‐modified montmorillonite (O‐MMT) was synthesized through the treatment of MMT with hexadecyl trimethyl ammonium chloride salt. Finally, ENR‐PSt/MMT nanocomposite was fabricated through curing a mixture of ENR (70 wt.%) and O‐MMT (5 wt.%) with PSt‐NH2 (25 wt.%). Transition electron microscopy (TEM) and powder X‐ray diffraction (XRD) analysis revealed that the fabricated nanocomposite has an exfoliated structure. Thermal property studies using thermogravimetric analysis (TGA) showed that the curing of ENR by PSt‐NH2, as well as incorporation of a small amount of MMT have synergistic effect on the thermal stability of the ENR resin.  相似文献   

18.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


19.
A porous silicate is obtained from octa-anionic cage-like poly-silicate (PS) and Ru3+ cations in an ethanol-based layer-by-layer assembly process. Electrochemical experiments (voltammetry and impedance spectroscopy) confirm the formation of redox-active ruthenium centers in the form of hydrous ruthenium oxide throughout the film deposit. Oxidation of Ru(III) to Ru(IV) at a potential below 0.5 V vs saturated Calomel electrode (SCE) is reversible, but a potential positive of 0.5 V vs SCE is associated with an irreversible change in reactivity, which is characteristic for very small hydrous ruthenium oxide nanoparticles. Further voltammetric experiments are performed in aqueous phosphate buffer solutions, and the effects of number of layers, scan rate, and pH are investigated. Three aqueous redox systems are studied in contact with the PS–Ru3+ films. The reduction of cationic methylene blue adsorbed onto the negative surface of the nanocomposite silicate is shown to occur, although most of the bound methylene blue appears to be electrochemically inactive either bound to silicate or buried into small pores. The PS–Ru3+-catalyzed oxidations of hydroquinone and arsenite(III) are investigated. Scanning electron microscopy images show that a macroscopically uniform porous surface is formed after deposition of 50 layers of the PS–Ru3+ nanocomposite. However, atomic force microscopy images demonstrate that in the initial deposition stages, irregular island growth occurs. The average rate of thickness increase for PS–Ru3+ nanocomposite films is 6 nm per deposition cycle.  相似文献   

20.
蔡杰  张俐娜 《高分子科学》2016,34(10):1281-1289
High strength cellulose composite films with antibacterial activities were prepared by dispersing montmorillonites (MMT) into cellulose solution in LiOH/urea aqueous solvent followed by regeneration in ethanol coagulation bath, and then by soaking in 5 wt% hexadecylpyridine bromide ethanol solutions to induce the antibacterial action. The cellulose/MMT composite films were characterized by field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, FTIR, UV-spectra, wide angle X-ray diffraction and mechanical test. The results revealed that MMT was dispersed well in the cellulose matrix to form layer structure with a thickness of approximately 3 nm. The mechanical properties of the cellulose/MMT composite films were significantly improved to achieve 132 MP for tensile strength as a result of the MMT delamination. The hexadecylpyridine bromide was fixed well in the cellulose/MMT matrix through cation exchange, leading to the excellent antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important in their practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号