首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
姬璇  汪佳裕  王安邦  王维坤  姚明  黄雅钦 《电化学》2022,28(12):2219010
硫化聚丙烯腈因其不溶解机制和有效缓解锂硫电池中多硫化物“穿梭效应”,被认为是具有吸引力的锂硫电池正极候选材料。硫化聚丙烯腈的导电聚合物骨架具有优异的电子导电性,同时共轭主链能有效解决充放电过程中硫正极体积变化引起的正极结构坍塌问题。因硫化聚丙烯腈的固-固反应机理,有效克服了传统硫正极在醚类电解液中多硫化物溶解及穿梭效应的问题,具有高正极活性物质利用率、出色的循环稳定性和结构稳定性等优势。有许多研究工作致力于通过硫化促进剂来提高硫化聚丙烯腈的硫含量,进而提高材料的能量密度。其中,硫化聚丙烯腈主链的环化度与循环稳定性的关系引起了我们的关注。在该研究工作中,通过在硫化过程中引入无水硫酸铜和正乙基正苯基二硫代氨基甲酸锌(ZDB)合成了SPAN-C-V复合材料。无水硫酸铜和ZDB的共同引入降低了聚丙烯腈环化反应的起始温度,同时提高了产物SPAN-C-V内碳碳双键的含量,在提高了材料硫含量的同时提高了其环化度。以SPAN-C-V为正极活性物质所组装的锂硫电池展现出良好的循环稳定性和倍率性能:在0.2 C (1 C = 600 mAh·kg-1)下循环100次后的可逆容量为601 mAh·kg-1,容量保持率为93%。该工作对于硫化聚丙烯腈材料的发展提供了参考。  相似文献   

2.
杨凯  章胜男  韩东梅  肖敏  王拴紧  孟跃中 《化学进展》2018,30(12):1942-1959
锂硫电池具有远超锂离子电池的高理论比容量(1675 mAh ·g-1),并且兼具硫资源丰富、生产成本低廉以及环境友好等优势。然而,多硫离子的穿梭效应造成金属锂负极钝化、引起电池容量和库仑效率下降、循环稳定性变差等严重问题,限制锂硫电池的实际应用。从正极和负极之间的隔膜层出发,引入多硫离子穿梭的阻挡层被认为是极为有效的研究策略。这些研究策略在缓解多硫离子穿梭、提高活性物质利用效率、延长循环寿命和循环稳定性方面具有显著效果。本文分类综述了近年来锂硫电池隔膜功能化的研究进展,并对未来隔膜功能化的研究趋势进行了预测。  相似文献   

3.
锂硫电池是极具应用潜力的下一代高能量密度电池体系之一。然而,其充放电中间产物多硫化锂的“穿梭效应”不仅消耗大量电解液,还导致硫活性物质利用率低、循环寿命短,是锂硫电池产业化进程中的主要瓶颈之一。引入催化剂加速硫活性物质转化速率,减少多硫化锂在电解液中的累积浓度,是抑制穿梭效应的有效解决策略。高效的催化剂应具备丰富的催化活性位点,以确保高效吸附多硫化锂并加速其向不溶的充放电产物转化。本文制备出硫掺杂石墨烯表面原位负载的双金属硫化物NiCo2S4(NCS@SG)并将其作为催化剂应用于锂硫电池的中间层。相比于单金属硫化物(CoS),NiCo2S4催化剂具有多活性中心催化位点,可以更好地吸附多硫化锂并促进其向放电产物快速转化。应用上述中间层后,电池的充放电比容量、库仑效率和循环稳定性得到了明显提升。当硫的负载达到15.3 mg·cm-2时,经过50次循环后,具有NCS@SG中间层的电池获得了高达93.9%的容量保持率。上述结果表明,设计双金属基催化剂是优化锂硫电池催化剂活性和反应效率的...  相似文献   

4.
采用硫单质作正极和金属锂为负极组成的锂硫(Li-S)电池具有很高的理论比能量(2600 Wh·kg-1),被认为是一种具有广泛应用前景的二次电池。其中,正极硫具有高的理论比容量(1675 mAh·g-1),储量丰富且环境友好。然而,硫较差的导电性、多硫化物的穿梭效应和锂枝晶生长等导致了Li-S电池在循环过程中容量衰减快、库仑效率低和安全隐患等问题,严重阻碍了其大规模应用。通过隔膜修饰提高Li-S电池的性能是一种有效的方法,近年来取得了很大进展。碳材料是较常见的一种隔膜修饰材料,本文综述了近年来常见碳材料及碳基复合材料用于修饰Li-S电池隔膜进而改善电池性能方面的研究进展,重点介绍了修饰层的设计及提升Li-S电池容量的机理。  相似文献   

5.
锂硫电池体系由于理论能量密度高和硫材料资源丰富,成为了极具发展潜力的二次电池之一.但由于放电过程中间产物多硫化物溶于有机电解液,产生穿梭效应,导致活性物质利用率低,造成电池容量损失和循环性能下降,而锂金属枝晶和界面问题同样限制了锂硫电池的进一步发展和利用.研究表明,电池结构设计和改造,如隔膜结构设计、正极夹层设计、正极载硫结构设计以及负极结构设计等方面,有效地缓解了上述问题.本文整理总结了近年来国内外在锂硫电池结构设计上研究思路和进展,并对今后的发展趋势做了进一步展望.  相似文献   

6.
惠鹏  杨蓉  邓七九  燕映霖  许云华 《化学通报》2019,82(11):982-988
锂硫电池因其能量密度高、原料丰富和价格低廉等优势而被认为是下一代的重要储能器件。但是,锂硫电池的发展仍面临诸多问题,包括多硫化物的穿梭效应、单质硫的导电性差、充电过程中硫体积膨胀导致的库仑效率差、容量快速衰减以及锂负极的腐蚀等。近年来,金属氧化物由于具有可吸附多硫化物、提高多硫化物之间的相互转化能力、形成3D形态纳米级结构及对主体材料与多硫化物之间的结合能发挥着关键作用等优点在锂硫电池正极材料的改性方面得到广泛应用。本文综述了多类金属氧化物(过渡金属氧化物、二元及多元金属氧化物、其他金属氧化物)在锂硫电池正极复合材料改性中的研究进展,并对金属氧化物在锂硫电池中的应用前景进行了展望。  相似文献   

7.
王东浩  晏鹤凤  龚正良 《电化学》2021,27(4):388-395
使用硫化物固体电解质的全固态锂硫电池由于多硫化物不溶于硫化物固体电解质及硫化物电解质不可燃的特性,得以完全避免穿梭效应并显著提高了电池的安全性能而被认为是极具潜力的下一代储能电池。如何建立并平衡复合正极中离子/电子导电网络且维持复合正极中较高活性物质含量对于全固态锂硫电池至关重要。本文以单质硫为活性物质研究了复合导电添加剂对全固态锂硫电池性能的影响,发现以乙炔黑(AB)为导电碳材料明显优于Super P和Ketjen Black;优化复合正极的组成,发现硫:乙炔黑:固体电解质的质量比为40:20:40时,全固态锂硫电池在室温和60℃下均具有良好的电化学性能。  相似文献   

8.
采用水热法合成片层状二硫化钼(MoS2),不添加黏结剂,通过简单真空抽滤将MoS2包覆在聚丙烯微孔隔膜(Celgard)上,从而提高锂硫电池的性能。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、比表面积孔隙度及化学吸附分析仪(BET)对MoS2进行了形貌和物性测试,使用电化学工作站和电池测试系统对锂硫电池进行电化学性能表征,研究了MoS2包覆隔膜对锂硫电池穿梭效应的抑制效果。结果表明:MoS2包覆Celgard隔膜通过吸附多硫化锂和阻挡多硫化锂的穿梭,可以有效抑制锂硫电池的穿梭效应,在400mA/g电流密度下,首圈容量达到1 010mA·h/g,循环150圈后容量为432mA·h/g,性能明显优于使用空白商用Celgard隔膜的锂硫电池。  相似文献   

9.
吴凯 《电化学》2020,26(6):825
锂硫电池具有能量密度高、价格低等优势,有希望应用于下一代储能领域. 但锂硫电池仍然存在一些问题,如多硫化物穿梭效应、缺乏有效的锂硫电池规模制备工艺等. 为了解决这些问题,作者以不同商用碳材料(乙炔黑、科琴黑与碳纳米管)和单质硫复合作为正极材料,探究正极制备工艺对多硫化物穿梭效应抑制效果及锂硫电池性能的影响. 通过研究,作者得出以下结论:科琴黑作为单质硫的载体,与单质硫球磨8 h后,匹配粘结剂聚乙烯吡咯烷酮(PVP)制备的正极浆料可实现在涂布和辊压后极片的厚度达到500 μm、压实密度达到991.65 mg·cm -3. 作者将最终得到的正极极片应用于高硫载量锂硫软包电池,电池首圈放电容量为137.4 mA·h,经过10圈循环后,放电容量为115.5 mA·h,表现出优异的电化学性能. 该碳硫复合正极材料制备工艺有望在锂硫电池的宏量制备中获得应用.  相似文献   

10.
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.  相似文献   

11.
Low-cost lithium sulfur(Li-S)batteries afford preeminent prospect as a next-generation high-energy storage device by virtue of great theoretical capacity.Nevertheless,their applications are restricted by some challenging technical barriers,such as weak cycling stability and low poor-conductivity sulfur loading originated in notorious shuttling effect of polysulfide intermediates.Herein,free of any complicated compositing process,we design an interlayer of carbon fiber paper supported TiO2/TiO to impede the shuttle effect and enhance the electrical conductivity via physical isolation and chemical adsorption.Such a self-crystallized homogeneous interlayer,where TiO2/TiO enables absorbing lithium polysulfides(LiPSs)and TiO plays a key role of high-electron-conductivity exhibited ultrahigh capacities(1000 mA·h/g at 0.5 C and 900 mA·h/g at 1 C)and outstanding capacity retention rate(97%)after 100 cycles.Thus,our design provides a simple route to suppress the shuttle effect via self-derived evolution Li-S batteries.  相似文献   

12.
Lithium–sulfur (Li-S) batteries have become one of the most promising candidates as next-generation batteries, owing to their high specific capacity, low cost, and environmental benignity. Although many strategies have been proposed to restrain the shuttle of lithium polysulfides (LiPSs) through physical trapping and chemical binding, the sluggish kinetics of PS conversion still degrade the capacity, rate, and cycling performance of Li-S batteries. Herein, a novel kind of few-layer BN with engineered nitrogen vacancies (v-BN) has been developed as a cathode matrix for Li-S batteries. The positive vacancies in the BN nanosheets not only promote the immobilization and conversion of LiPSs, but also accelerate the lithium ion diffusion in cathode electrodes. Compared with pristine BN, the v-BN cathodes exhibit higher initial capacities from 775 mA h g−1 to 1262 mA h g−1 at 0.1 C and a high average coulombic efficiency of over 98 % during 150 cycles. Upon increasing the current density to 1 C, the cell still preserves a capacity of 406 mA h g−1 after 500 cycles, exhibiting a capacity decay of only 0.084 % per cycle. The new vacancy-engineered material provides a promising method for achieving excellent performance in Li-S batteries.  相似文献   

13.
Lithium–sulfur(Li-S) batteries are regarded as one of the most promising energy storage devices because of their low cost, high energy density, and environmental friendliness. However, Li-S batteries suffer from sluggish reaction kinetics and serious “shuttle effect” of lithium polysulfides(LiPSs), which causes rapid decay of battery capacity and prevent their practical application. To address these problems, introducing single-atom catalysts(SACs) is an effective method to improve the electroch...  相似文献   

14.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   

15.
范业鹏  罗业强  沈培康 《电化学》2021,27(4):377-387
锂硫电池的实际能量密度不高和多硫化物(LiPSs)的穿梭效应等问题严重影响了该电池的实际应用。本文通过将二维的Ti3C2Tx Mxene纳米片与碳黑/硫(CB/S)材料进行混合,制备了Ti3C2Tx-CB/S正极材料并将其涂覆在商业隔膜(PP)上,最终获得了Ti3C2Tx-CB/S-PP一体式电极并用于锂硫电池。利用Ti3C2Tx纳米片对CB/S进行修饰,不仅能提高活性物质硫的导电性,还能对扩散的LiPSs进行物理阻挡和化学吸附。而一体式电极的设计有利于提高电池的能量密度。恒流充放电测试结果表明,Ti3C2Tx-CB/S-PP电极在0.1 C电流下的初始放电容量为1028.8 mAh·g-1,高于不含Ti3C2Tx的CB/S-PP电极的896.8 mAh·g-1。Ti3C2Tx-CB/S-PP电极还展示出了比基于传统铝箔集流体的Ti3C2Tx-CB/S-Al电极更好的循环稳定性,前者在0.5 C下400圈长循环测试中的每圈衰减率为0.072%,而后者则为更高的0.10%。本文利用Ti3C2Tx-CB/S构建一体式电极的策略为实现高性能和高能量密度的锂硫电池提供了新的研究方向。  相似文献   

16.
Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effect leads to severe capacity fading and low coulombic efficiency.Here,graphitic carbon nitride(g-C_3N_4) is designed and prepared via a feasible and simple method from trithiocyanuric acid (TTCA) to anchor the polysulfides and suppress the shuttle effect.The obtained g-C_3N_4 exhibits strong chemical interaction with polysulfides due to its high N-doping of 56.87 at%,which is beneficial to improve the cycling stability of Li-S batteries.Moreover,the novel porous framework and high specific surface area of g-C_3N_4 also provide fast ion transport and broad reaction interface of sulfur cathode,facilitating high capacity output and superior rate performance of Li-S batteries.As a result,Li-S batteries assembled with g-C_3N_4 can achieve high discharge capacity of 1200 mAh/g at 0.2 C and over 800 mAh/g is remained after 100 cycles with a coulombic efficiency more than 99.5%.When the C-rate rises to 5 C,the reversible capacity of Li-S batteries can still maintain at 607mAh/g.  相似文献   

17.
《中国化学快报》2020,31(9):2347-2352
Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical specific energy density. However, the utilization of sulfur is seriously reduced by the shuttle effect of lithium polysulfides and the low conductivity of sulfur and lithium sulfide (Li2S). Herein, we introduced bimetal-organic frameworks (Co/Zn-ZIF) derived cobalt and nitrogen-doped carbons (Co/N-C) into Li-S batteries through host design and separator modification. The Co/N-C in Li-S batteries effectively limits the shuttle effect through simultaneously serving as polysulfide traps and chemical catalyst. As a result, the Li-S batteries deliver a high reversible capacity of 1614.5 mAh/g and superior long-term cycling stability with a negligible capacity decay of only 0.04% per cycle after 1000 cycles. Furthermore, they have a high area capacity of 5.5 mAh/cm2.  相似文献   

18.
为了抑制热力学穿梭效应, 改善锂硫电池的电化学性能. 将三(2-羧乙基)膦芳纶纸中间层(TCEP-AP)嵌在锂硫电池正极和隔膜之间. 通过透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征. 电化学实验表明, TCEP是一种特别有效的多硫化物剪切剂, 在0.1C倍率时, S-TCEP-AP 锂硫电池的初始放电容量达到1544 mA·h·g -1. 在1C倍率下循环400次后, 比放电容量仍维持在609 mA·h·g -1, 衰减率极低(每周衰减0.029%), 展现出良好的倍率和循环性能.  相似文献   

19.
Lithium-sulfur(Li-S) batteries have been puzzled by the “shuttle effect”. In the recent years, catalytic materials present a huge potential for solving this problem. However, the exploitation for catalytic activity was still challenging in Li-S batteries. In this article, we put forward a single atom catalyst (SAC) of FeN4 coupled with Fe3C on the N-doped carbon (FeN4/Fe3C@NC) by one-step pyrolysis method. The FeN4 and Fe3C synergistically catalyze the polysulfides conversion when the N-doped carbon provides the high conductive three-dimensional skeleton in Li-S batteries. As a result, the FeN4/Fe3C@NC shows a specific capacity of 1100 mA·h/g at 0.2 C(1 C=1675 mA/g). In addition, the FeN4/Fe3C@NC maintains 99.01% of the pristine specific capacity after 100 cycles at 0.5 C, indicating the improved electrochemical performance in Li-S batteries. This work sheds new lights on the design of engineering catalysts for developing high-performance Li-S batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号