首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal oxides exposing high-index facets are potentially impactful in catalysis and adsorption processes owing to under-coordinated ions and polarities that alter their interfacial properties compared to low-index facets. Here, we report molten-salt syntheses of NiO particles exposing a variety of crystal facets. We show that for a given anion (nitrate or chloride), the alkali cation has a notable impact on the formation of crystals exposing {311}, {611}, {100}, and {111} faces. Based on a parametric analysis of synthesis conditions, we postulate that the crystallization mechanism is governed by the formation of growth units consisting of NiII complexes whose coordination numbers are determined by temperature and the selection of anion (associated to the coordination sphere) and alkali cation (associated with the outer coordination sphere). Notably, our findings reveal that high-index facets are particularly favored in chloride media and are stable under prolonged periods of catalysis and steaming.  相似文献   

2.
Metal oxides exposing high‐index facets are potentially impactful in catalysis and adsorption processes owing to under‐coordinated ions and polarities that alter their interfacial properties compared to low‐index facets. Here, we report molten‐salt syntheses of NiO particles exposing a variety of crystal facets. We show that for a given anion (nitrate or chloride), the alkali cation has a notable impact on the formation of crystals exposing {311}, {611}, {100}, and {111} faces. Based on a parametric analysis of synthesis conditions, we postulate that the crystallization mechanism is governed by the formation of growth units consisting of NiII complexes whose coordination numbers are determined by temperature and the selection of anion (associated to the coordination sphere) and alkali cation (associated with the outer coordination sphere). Notably, our findings reveal that high‐index facets are particularly favored in chloride media and are stable under prolonged periods of catalysis and steaming.  相似文献   

3.
Growth of ice crystals has attracted attention because ice and water are ubiquitous in the environment and play critical roles in natural processes. Hexagonal ice, I(h), is the most common form of ice among 15 known crystalline phases of ice. In this work we report the results of an extensive and systematic molecular dynamics study of the temperature dependence of the crystal growth on the three primary crystal faces of hexagonal ice, the basal {0001} face, the prism {1010} face, and the secondary prism {1120} face, utilizing the TIP4P-2005 water model. New insights into the nature of its anisotropic growth are uncovered. It is demonstrated that the ice growth is indeed anisotropic; the growth and melting of the basal face are the slowest of the three faces, its maximum growth rates being 31% and 43% slower, respectively, than those of the prism and the secondary prism faces. It is also shown that application of periodic boundary conditions can lead to varying size effect for different orientations of an ice crystal caused by the anisotropic physical properties of the crystal, and results in measurably different thermodynamic melting temperatures in three systems of similar, yet moderate, size. Evidence obtained here provides the grounds on which to clarify the current understanding of ice growth on the secondary prism face of ice. We also revisit the effect of the integration time step on the crystal growth of ice in a more thorough and systematic way. Careful evaluation demonstrates that increasing the integration time step size measurably affects the free energy of the bulk phases and shifts the temperature dependence of the growth rate curve to lower temperatures by approximately 1 K when the step is changed from 1 fs to 2 fs, and by 3 K when 3 fs steps are used. A thorough investigation of the numerical aspects of the simulations exposes important consequences of the simulation parameter choices upon the delicate dynamic balance that is involved in ice crystal growth.  相似文献   

4.
唐鼎元  仲维卓 《结构化学》1996,15(3):227-230
用自由生长系统研究了三硼酸锂LiB_3O_5(LBO)晶体的实际生长形态。实验表明,它的各晶面簇的重要性的顺序为:{110}>{011}>{201}>{111}。讨论了LBO晶体的生长习性与内部结构之间的关系并应用负离子配位多面体理论模型解释了LBO晶体的生长形态。  相似文献   

5.
6.
In this paper a new molecular dynamics simulation methodology to investigate steady-state heterogeneous crystal growth from a supercooled liquid is presented. The method is tested on pure component systems such as Lennard-Jonesium and water/ice, as well as multicomponent systems such as methane hydrate crystals. The setup uses periodicity in all three directions and two interfaces; at one interface, crystallization occurs, while at the other, melting is enforced by locally heating the crystal only near that interface. Steady-state conditions are achieved when the crystal is melted at the same rate as the growth occurs. A self-adaptive scheme that automatically modifies the rate of melting to match the rate of growth, crucial for establishing steady-state conditions, is described. In contrast with the recently developed method of Razul et al. [Mol. Phys. 103, 1929 (2005)], where the rates of growth (melting) were constant and the temperatures determined, the present approach fixes the supercooling temperature at the growing interface and identifies the corresponding steady-state crystal growth rate that corresponds to the thermodynamic force provided. The static properties of the interface (e.g., the interfacial widths) and the kinetics of the crystal growth are found to reproduce well previous findings. The importance of establishing steady-state conditions in such investigations is also briefly discussed.  相似文献   

7.
极性有机晶体在不同的溶剂中具有明显不同的生长习性, 主要有两个方面的原因: 一是极性有机晶体属非中心对称性晶类, 晶体具有极轴, 极轴的存在对分子堆积和晶体生长具有重要影响; 另一是极性有机晶体的界面结构不同, 溶剂与晶体界面的相互作用不同, 使得晶体同一面族的生长速率不同, 从而导致了晶体习性的改变。本文从几种典型极性有机晶体的分子排列和结构特征出发, 着重探讨了极性有机晶体的界面结构的差异对晶体习性的影响; 结合晶体生长界面与溶剂分子的相互作用进一步理解了晶体生长的溶剂效应; 通过理解极性有机晶体的习性机制, 探讨了晶体实际形态的控制。  相似文献   

8.
Polyaspartic acid (PAA) and phosphophoryn (PPn) have been suggested to adsorb specifically on the (100) and (010) faces, respectively, of octacalcium phosphate (Ca4H(PO4)3 · 2.5H2O, OCP). In this study, the extent of adsorption and influence of these molecules on OCP crystal growth has been investigated. For kinetic studies, protein effects on crystal growth were examined in solutions sustained at a constant level of supersaturation at pH 6.00 and ionic strength of 0.08 mol l−1. The maximum adsorbed mol surface concentration for PPn was 100-fold less than that for PAA. Inhibitory effects interpreted in terms of mol surface coverage showed PPn to retard OCP growth more effectively than PAA. However, when considering percentage of crystal face covered by protein, PAA and PPn showed similar maximum adsorption concentrations onto the (100) and (010) crystal faces, respectively. PAA inhibited OCP growth by 20% when only 1% of the (100) face (1% total crystal area) was covered. PPn had to reach over 200% (010) face coverage (or 28% total crystal area) before a similar level of crystal growth inhibition was obtained. This difference in inhibitory effect may be the result of a more effective β-strand conformation of the shorter PAA molecule or may indicate that growth at the (100) face is rate controlling and, therefore, less than 1% coverage of this face is needed before a significant decrease in rate is observed.  相似文献   

9.
The use of molecular modelling in the interpretation of inverse gas chromatography data is discussed. Crystal faces can be visualised and likely cleavage planes calculated using the surface attachment energies. Assuming that the preferred cleavage plane is the crystal face with the smallest attachment energy then the predominant crystal faces of a crystalline particle can be predicted. Surface adsorption can be modelled using Van der Waals and electrostatic interactions to evaluate the interaction energies between individual atoms of the probe molecule and atoms of the test molecule orientated as in the surface. Using examples of pharmaceutical materials, modelling has been shown to be successful in the understanding of changes in the surface energetics.  相似文献   

10.
Both the dissolution and growth of a molecular crystalline material, urea, has been studied using dynamical atomistic simulation. The kinetic steps of dissolution and growth are clearly identified, and the activation energies for each possible step are calculated. Our molecular dynamics simulations indicate that crystal growth on the [001] face is characterized by a nucleation and growth mechanism. Nucleation on the [001] urea crystal face is predicted to occur at a very high rate, followed by rapid propagation of the steps. The rate-limiting step for crystallization is actually found to be the removal of surface defects, rather than the initial formation of the next surface layer. Through kinetic Monte Carlo modeling of the surface growth, it is found that this crystal face evolves via a rough surface topography, rather than a clean layer-by-layer mechanism.  相似文献   

11.
Atomic force microscopy has been used to image the various facets of two morphologically distinct samples of silicalite. The smaller (20 microm) sample A crystals show 1 nm high radial growth terraces. The larger (240 microm) sample B crystals show growth terraces 1 to 2 orders of magnitude higher than the terraces on sample A with growth edges parallel to the crystallographic axes. Moreover, the terraces on the (010) face are significantly higher than the terraces on the (100) face - inconsistent with the previously proposed 90 degrees intergrowth structure. Sample A highlights that under certain synthetic conditions, silicalite grows in a manner akin to zeolites Y and A, via the deposition of layers comprising, in the case of silicalite, pentasil chains. It is probable that the rate of terrace advance is identical on the (010) and (100) faces, and it is the rate of terrace nucleation that dictates the overall growth rate of each facet and hence the relative size expressed in the final crystal morphology. Analysis of the growth terraces of sample B and detailed consideration of the structures of both MFI, and a closely related material MEL, lead to the proposal of a generalized growth mechanism for silicalite including the incorporation of defects within the structure. These defects are thought to be responsible for both the relative and the absolute terrace heights observed and may also explain the hourglass phenomenon observed by optical microscopy. The implications of this growth mechanism, supported by results of infrared microscopy, generate a new dimension to the continuing debate on the existence of intergrowths within one of the most important structures relevant to zeolite catalysis.  相似文献   

12.
The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular modulation of COM crystallization by urinary constituents is crucial for understanding and controlling renal stone disease. A comprehensive molecular-scale view of COM shape modification by citrate, obtained through a combination of in situ atomic force microscopy and molecular modeling, is presented here. We find that while the most important factors determining binding strength are coordination between COO- groups on citrate and Ca ions in the lattice, as well as H-bonds formed between the OH group of citrate and an oxalate group, the nonplanar geometry of the steps provides the most favorable environment due to the ability of the step-edge to accommodate all Ca-COO- coordinations with minimal strain. However, binding to all steps and terraces on the (010) face is much less favorable than on the (101) face due to electrostatic repulsion between oxalate and COO- groups. For example, the maximum binding energy, -166.5 kJ mol(-1), occurs for the [101] step on the (101) face, while the value for the [021] step on the (010) face is only -56.9 kJ mol(-1). This high selectivity leads to preferential binding to steps on the (101) face that pins step motion. Yet anisotropy in interaction strength on this face drives anisotropic changes in step kinetics that are responsible for shape modification of macroscopic COM crystals. Thus, the molecular scale growth kinetics and the bulk crystal habit are fully consistent with the simulations.  相似文献   

13.
The unique, plate‐like morphology of hydroxyapatite (HAP) nanocrystals in bone lends to the hierarchical structure and functions of bone. Proteins enriched in phosphoserine (Ser‐OPO3) and glutamic acid (Glu) residues have been proposed to regulate crystal morphology; however, the atomic‐level mechanisms remain unclear. Previous molecular dynamics studies addressing biomineralization have used force fields with limited benchmarking, especially at the water/mineral interface, and often limited sampling for the binding free energy profile. Here, we use the umbrella sampling/weighted histogram analysis method to obtain the adsorption free energy of Ser‐OPO3 and Glu on HAP (100) and (001) surfaces to understand organic‐mediated crystal growth. The calculated organic‐water–mineral interfacial energies are carefully benchmarked to density functional theory calculations, with explicit inclusion of solvating water molecules around the adsorbate plus the Poisson–Boltzmann continuum model for long‐range solvation effects. Both amino acids adsorb more strongly on the HAP (100) face than the (001) face. Growth rate along the [100] direction should then be slower than in the [001] direction, resulting in plate‐like crystal morphology with greater surface area for the (100) than the (001) face, consistent with bone HAP crystal morphology. Thus, even small molecules are capable of regulating bone crystal growth by preferential adsorption in specific directions. Furthermore, Ser‐OPO3 is a more effective growth modifier by adsorbing more strongly than Glu on the (100) face, providing one possible explanation for the energetically expensive process of phosphorylation of some proteins involved in bone biomineralization. The current results have broader implications for designing routes for biomimetic crystal synthesis. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
极性晶体结晶习性的形成机理   总被引:6,自引:0,他引:6  
仲维卓  唐鼎元 《结构化学》1997,16(2):106-112
将负离子配位多面体生长基元模型应用于对极性晶体结晶习性的研究。从结晶化学角度探讨了晶体中负离子配位多面体的结晶方位与晶体各族晶面显露规律,提出负离子配位多面体在晶体各族晶面上联结的稳定性决定了晶面的生长速率。在不同的生长温度和溶液碱浓度下,负离子配住多面体相互联结构成不同维度的生长基元,而不同维度的生长基元往晶体各族晶面上叠合的速率比例是在变化的,这是导致晶体结晶形态多变性的主要原因。同时提出:如果把PBC模型中的化学键链设定为配位多面体相联结的键链,使得极性晶体结晶习性中难以解释的问题就会迎刃而解,从而使PBC理论模型的应用会得到更进一步的拓宽。  相似文献   

15.
Recently,theconformationofthecalixarenehasbeenshowntobeimportantincontrollingtheseIectivityofthereceptor.Forexample,sodiumioncouldbeboundverystronglybyesterderivativesofcalix[4]areneintheconeconformationl.Wehavefoundthatinthepresenceofcertainamountofsodiumion,microamountofReO4-canbequantitativelyextractedintol,2-dichloroethanebytheligandtetraethylp-tert-butylcalix[4]arenetetraacetate(L).ItshowsthatthepresenceofNa inaqueoussolutioncanpromotetheformationofhydrophobiccomplex[NaL] .ReO'-whichc…  相似文献   

16.
Permeation of chloride and bromide through Nafion 117 modified with hydrophobic metal complexes of Eu3+ and Pr3+ with thenoyl trifluoro acetone (TTA), β-isopropyl tropolone (IPT) and 8-hydroxyquinoline (oxine) has been studied. The complexes were precipitated within the polymer bed with an aqueous–alcoholic solution of the reagents at a pH between 5 and 6. The permeation fluxes of the halides have been calculated by measuring the concentrations of the anions in the receiving solutions using ion chromatography. The high flux values have been attributed to the direct coordination of the inorganic anions to the central metal ions in their complexes. The chloride ion having a smaller radius and higher free energy of hydration as compared to bromide, showed higher permeation. The cations associated with the corresponding anion is also transported along with the anion. The size of the accompanying cation has a strong influence on anion permeation.  相似文献   

17.
用凝胶法合成了标题化合物[NH4(15-C-5)2][Cd2(SCN)5](15-C-5=C10H20O5)的晶体,并对其进行了红外光谱、元素分析等各项物理性质的测试,并经X射线单晶结构分析得到了配合物的全部晶体学数据:Mr=973.78,正交晶系,空间群Pnma,晶胞参数a=10.507(1)A,b=16.584(2)A,c=23.494(2)A,V=4093.8(3)A3,Z=4,Dc=2.580g/cm3,μ=13.31cm(-1),F(000)=1968,R=0.070,Rω=0.085。结构分析结果表明,配阳离子是由一个NH4+和两个15-C-5组成的,NH4+没有进入15-C-5空腔内,而是位于两个15-C-5之间,呈夹心结构;配阴离子是以[Cd2(SCN)5]为单元的阴离子长键,其中一组SCN-被四个Cd离子共享,其余两组SCN-被两个Cd离子共享,呈变形八面体构型。配阳离子[NH4(15-C5)2]+和配阴离子[Cd2(SCN)5]-间靠静电力结合成配合物晶体。  相似文献   

18.
Atomistic computational modelling of the surface structure of the catalytically-active perovskite LaCoO(3) has been undertaken in order to develop better models of the processes involved during catalytic oxidation processes. In particular, the energetics of creating oxygen ion vacancies at the surface have been investigated for the three low index faces (100), (110) and (111). Two mechanisms for vacancy creation have been considered involving dopant Sr(2+) cations at the La(3+) site and reduction of Co(3+) to Co(2+). For both mechanisms, there is a general tendency that the smaller the cation defect separation, the lower the energy of the cluster, as would be expected from simple electrostatic considerations. In addition, there are clear indications that oxygen vacancies are more easily created at the surface than in the bulk. The results also confirm that the presence of defects strongly influences crystal morphology and surface chemistry. The importance of individual crystal surfaces in catalysis is discussed in terms of the energetics for the creation of oxygen vacancies.  相似文献   

19.
An approach to organic-inorganic interfacial structure at the atomic level is a great challenge in the studies of biomineralization. We demonstrate that atomic force microscopy (AFM) is powerful tool to discover the biomineral interface in detail. By using a model system of (100) hydroxyapatite (HAP) face and citrate, it reveals experimentally that only a side carboxylate and a surface calcium ion are involved in the binding effect during the citrate adsorption, which is against the previous understandings by using Langmuir adsorption and computer simulation. Furthermore, the adsorbed citrate molecules can use their free carboxylate and hydroxyl groups to be self-assembled on the HAP surface. AFM examination also finds that the presence of citrate molecules on the HAP crystal faces can enhance the adhesion force of the HAP surface. We suggest that the established AFM method can be used for a precise and direct understanding of biointerfaces at the atomic level.  相似文献   

20.
The influence of four calcium complexing substances, i.e., citric acid (CIT), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) and pyromellitic acid (PMA), on the crystal growth rate of the calcium carbonate polymorphs aragonite and calcite has been studied. Using a seeded constant supersaturation method supersaturation was maintained at 4 by keeping a constant pH of 8.5 through addition of sodium carbonate and calcium chloride solutions. The unique composition of each solution was calculated using chemical speciation. The growth rate was interpreted in terms of an overall growth rate. For both calcite and aragonite, the crystal growth rate is significantly reduced in the presence of the calcium complexing substances. The growth retarding effect depends on both the concentration and the polymorph. The relative crystal growth rate was correlated to the total complexing agent concentration using a Langmuir adsorption approach. Aragonite appeared fully covered for lower total concentrations than calcite. Furthermore, CIT very efficiently blocked aragonite growth contrary to what was observed for calcite. This is thought to be related to certain distinct features of the dominant aragonite crystal faces compared to the dominant calcite faces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号