首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Functionalized carbon nanotubes (F‐CNTs) were synthesized through the nucleophilic substitution reaction between four‐armed star poly(d ‐lactide) (4PDLA) and acryl chloride of carbon nanotubes and were characterized using Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and thermogravimetric analysis. The results indicated that the 4PDLA was successfully grafted onto carbon nanotubes, and it contained 45.5 wt% of 4PDLA. Poly(l ‐lactide) (PLLA) nanocomposites with different F‐CNTs content were prepared by solution casting. Optical microscopy and scanning electron microscopy results showed that F‐CNTs were uniformly dispersed in the nanocomposites. Crystallization behavior and crystal structure of PLLA nanocomposites were investigated using differential scanning calorimetry, polarizing microscope and X‐ray diffraction. The results found that poly(lactide) stereocomplex crystal could be formed between PLLA and F‐CNTs. F‐CNTs played different roles in the process of solution casting and melting crystallization. Polarizing microscope also revealed that crystallization temperature had a significant effect on the nucleation and spherulites growth of PLLA. Thermal stability and mechanical properties of the nanocomposites were also investigated by thermogravimetric analysis, dynamic mechanical analysis and tensile testing. These results demonstrated that the addition of F‐CNTs obviously improved thermal stability and tensile strength of PLLA. The results showed that PLLA/F‐CNTs would have potential values in engineering fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Poly (lactic acid) (PLA) was synthesized using d , l ‐lactide monomer and zinc oxide (ZnO) pillared organic saponite as the green catalyst, through ring‐opening polymerization. The effects of stoichiometry of catalyst and polymerization conditions on molecular weight of PLA were evaluated by orthogonal experiment. The optimum polymerization parameters were: 0.5 wt% ZnO pillared organic saponite and reaction conditions of 170°C for 20 hr. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy confirmed the PLA structure. Gel permeation chromatography showed that the average molecular weight of PLA was 48,442 g/mol, and its polydispersity index was 1.875. Differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy showed that ZnO pillared organic saponite improved the crystallinity of PLA. Thermal gravimetric analysis showed improved thermal stability of PLA because of ZnO pillared organic saponite. Thermal decomposition kinetics of PLA/ZnO pillared organic saponite nanocomposites was also studied. The activation energies (Ea) for thermal degradation of PLA and PLA/ZnO pillared organic saponite nanocomposites were evaluated by the Kissinger and Ozawa methods, which demonstrated that ZnO pillared organic saponite enhanced Ea of thermal degradation of PLA and significantly improved its thermal stability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A new poly(butylene succinate) (PBS)‐grafted vapor grown carbon fiber (VGCF)/poly(L ‐lactide) (PLLA) nanocomposites were successfully prepared by an in situ condensation reaction between PBS (Mw = 6,000) and surface oxidized VGCF, followed by direct melt mixing technique, and their mechanical and thermal properties were evaluated. Fourier transform infrared spectroscopy and scanning electron microscopy studies indicate a chemical interaction between the PBS and the surface of VGCF. It was found that the maximum tensile strength and modulus of PBS‐grafted VGCF/PLLA nanocomposites were 135 MPa (27% increase relative to neat PLLA) and 4,400 MPa (29% increase relative to neat PLLA), respectively. The results indicate that significant improvement in the mechanical properties can be accomplished by optimizing the surface modification conditions for VGCF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4433–4441, 2008  相似文献   

4.
Poly(lactic acid) (PLA) is the most suitable for biodegradable packaging film because of its excellent integrated property, but the poor gas barrier property is its weakness. In this study, a nanocomposite film based on PLA incorporated with 0‐, 1‐, 3‐, 5‐, 10‐, or 15‐wt% nano‐Ag was developed. Effect of multiscale structure on the barrier properties of PLA/nano‐Ag films was studied. The PLA nanocomposite film with 5‐wt% nano‐Ag had the lowest water vapor permeability (WVP) value. Oxygen transmission rate (OTR) value for PLA nanocomposites with 3‐wt% nano‐Ag was found to be the lowest among all the samples. Multiscale structure was demonstrated by the scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction measurement, and differential scanning calorimetry results. The crystallinity of the PLA phase increased with the content of nano‐Ag in the PLA composites. The evolution of the PLA phase crystallinity could improve the barrier properties of PLA/nano‐Ag composite films for food packaging applications. From the view of multiscale structure, it is better to achieve a balance among short‐range conformation in the amorphous region, long‐range‐ordered structure, and ordered aggregated structure to improve the barrier properties of PLA/nano‐Ag composite films.  相似文献   

5.
In this work, multiwalled carbon nanotubes (MWNTs) were surface‐modified and grafted with poly(L ‐lactide) to obtain poly(L ‐lactide)‐grafted MWNTs (i.e. MWNTs‐g‐PLLA). Films of the PLLA/MWNTs‐g‐PLLA nanocomposites were then prepared by a solution casting method to investigate the effects of the MWNTs‐g‐PLLA on nonisothermal and isothermal melt‐crystallizations of the PLLA matrix using DSC and TMDSC. DSC data found that MWNTs significantly enhanced the nonisothermal melt‐crystallization from the melt and the cold‐crystallization rates of PLLA on the subsequent heating. Temperature‐modulated differential scanning calorimetry (TMDSC) analysis on the quenched PLLA nanocomposites found that, in addition to an exothermic cold‐crystallization peak in the range of 80–120 °C, an exothermic peak in the range of 150–165 °C, attributed to recrystallization, appeared before the main melting peak in the total and nonreversing heat flow curves. The presence of the recrystallization peak signified the ongoing process of crystal perfection and, if any, the formation of secondary crystals during the heating scan. Double melting endotherms appeared for the isothermally melt‐crystallized PLLA samples at 110 °C. TMDSC analysis found that the double lamellar thickness model, other than the melting‐recrystallization model, was responsible for the double melting peaks in PLLA nanocomposites. Polarized optical microscopy images found that the nucleation rate of PLLA was enhanced by MWNTs. TMDSC analysis found that the incorporation of MWNTs caused PLLA to decrease the heat‐capacity increase (namely, ΔCp) and the Cp at glass transition temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1870–1881, 2007  相似文献   

6.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   

7.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

8.
An investigation of the cooperative effects of plasticizer (PEG) and nucleation agent (TMC‐306) on stereocomplex‐type poly(lactide acid) formation and crystallization behaviors between poly(L‐lactide acid) (PLLA) and poly(D‐lactide acid) (PDLA) was conducted. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) analysis indicated that exclusive stereocomplex‐type poly(lactide acid) (sc‐PLA) crystallites without any homocrystallites poly(lactide acid) (hc‐PLA) did form by incorporation of PEG, TMC‐306, or both at a processing temperature higher than the melting temperature of sc‐PLA (around 230°C). The non‐isothermal and isothermal crystallization kinetics showed that PEG and TMC‐306 could independently accelerate the crystallization rate of sc‐PLA. The crystallization peak temperature and crystallization rate of sc‐PLA were significantly improved by the presence of PEG and TMC‐306. The influence of PEG and TMC‐306 on the morphologies of sc‐PLA was also investigated using polarized optical microscopy (POM). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This study elucidates the thermal degradation behavior of biodegradable poly(l-lactide) (PLLA)/layered double hydroxide (LDH) nanocomposites was explored using thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS) in an inert atmosphere. PLLA/LDH nanocomposites were fabricated using PLLA and organically-modified magnesium/aluminum layered double hydroxide (P-LDH) in tetrahydrofuran solution. According to the TGA results, the thermal stability of PLLA/P-LDH nanocomposites was significantly lower than that of pure PLLA matrix, perhaps because P-LDH provides thermal acceleration of the degradation of the underlying polymer from the heat source. The identification of the thermal degradation products by Py-GC/MS evidently shows that introducing P-LDH into PLLA leads to a remarkable change during the thermal degradation process. The main reaction route of neat PLLA was through inter- and intra-transesterification to generate lactides and oligomer. The primary volatile products obtained from PLLA/P-LDH nanocomposites were lactides regardless of the temperature of degradation. These results suggest that the thermal degradation behavior of PLLA/P-LDH nanocomposites is governed by the preferential formation of lactide by the unzipping depolymerization reaction, which is catalyzed by Mg and Al components in P-LDH.  相似文献   

10.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

11.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

12.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

13.
Poly(L‐lactide) (PLLA) composites with TiO2‐g‐poly(D‐lactide) (PDLA), which was synthesized by surface‐initiated opening ring polymerization with TiO2 as initiator and Sn(Oct)2 as catalyst, were prepared by solution casting. The synthesized TiO2‐g‐PDLA was characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS), showing larger size corresponding to that of TiO2. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements were further carried out and indicated that PDLA was grafted onto TiO2 through covalent bond. For PLLA/TiO2‐g‐PDLA composites, the stereocomplex crystallites were formed between PDLA grafted on the surface of TiO2 and the PLLA matrix, which was determined by FT‐IR, differential scanning calorimetry (DSC), and X‐ray diffractometer (XRD). The influence of stereocomplex crystallites on the rheological behavior of PLLA/TiO2‐g‐PDLA was investigated by rheometer, which showed greater improvement of rheological properties compared to that of PLLA/TiO2 composites especially with a percolation content of TiO2‐g‐PDLA between 3 wt%–5 wt%. The crystallization and melting behavior of PLLA/TiO2‐g‐PDLA composites were studied by DSC under different thermal treatment conditions. The formed PLA stereocomplex network acted as nucleating agents and a special interphase on the functional surface of TiO2, which resulted in imperfect PLLA crystal with lower melting temperature. When the thermal treatment was close to the melting temperature of PLA stereocomplex, the crystallinity approached to the maximum. The isothermal crystallization study by polarizing microscope (POM) indicated that stereocomplex network presented stronger nucleation capacity than TiO2‐g‐PDLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This study aims to achieve a molecule‐level dispersion of graphene nanosheets (GNSs) and a maximum interfacial interaction between GNSs and a polymer matrix. GNS‐reinforced poly (ethylene glycol) (PEG)/poly (lactic acid) (PLA) nanocomposites are obtained by a facile and environment‐friendly preparation method. Graphite oxide and GNSs are characterized by atomic force microscopy, Raman spectroscopy, and X‐ray diffraction. Scanning electron microscopy shows that the state of dispersion of the GNS in the PEG/PLA matrix is distribution. The tensile strength and Young's modulus increases by 45% and 188%, respectively, with the addition of 4.0 wt% GNSs. The thermal stability of the GNS‐based nanocomposites also improves. Differential scanning calorimetry indicates that GNSs have no remarkable effect on the crystallinity of the nanocomposites. The effective reinforcement of the nanocomposites is mainly attributed to the highly strong molecular‐level dispersion of the GNSs in the polymer matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Phosphorylcholine‐containing poly(L‐lactide) (PLLA‐PC) was synthesized by ring‐opening polymerization of L‐lactide in the presence of glycerophosphorylcholine originated from egg lecithin. Self‐assembling micelles were then obtained by film hydration, ultrasonication and stirring. Transmission electron microscopy and confocal laser scanning microscopy confirmed the micellar structure with hydrophobic core and hydrophilic shell. The critical micellar concentration (CMC) value of PLLA‐PC was only 1/50 that of naturally occurring PC, in agreement with a better surfactant property of the former. Dynamic light scattering showed that the size and size distribution of micelles varied with dilution, but the CMC was independent of the concentration of NaCl solution within 0.9 wt%, indicating that the micelles could be stable upon intravenous injection. In addition, the micelle solution could be stored at 4 °C over 30 days without any noticeable changes, whereas at 37 °C, the size, size distribution and the number of micelles decreased over time due to degradation. The solubility of clofazimine, a highly hydrophobic drug, was found to be 11.9 µg/ml in the PLLA‐PC micellar solution, which was 40 times that in pure water. This preliminary study suggests that PLLA‐PC micelles present a great potential as delivery system for hydrophobic drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A model polyethylene‐poly(L ‐lactide) diblock copolymer (PE‐b‐PLLA) was synthesized using hydroxyl‐terminated PE (PE‐OH) as a macroinitiator for the ring‐opening polymerization of L ‐lactide. Binary blends, which contained poly(L ‐lactide) (PLLA) and very low‐density polyethylene (LDPE), and ternary blends, which contained PLLA, LDPE, and PE‐b‐PLLA, were prepared by solution blending followed by precipitation and compression molding. Particle size analysis and scanning electron microscopy results showed that the particle size and distribution of the LDPE dispersed in the PLLA matrix was sharply decreased upon the addition of PE‐b‐PLLA. The tensile and Izod impact testing results on the ternary blends showed significantly improved toughness as compared to the PLLA homopolymer or the corresponding PLLA/LDPE binary blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2755–2766, 2001  相似文献   

17.
The blends of poly(1,3‐trimethylene carbonate‐b‐(l ‐lactide‐ran‐glycolide)) (PTLG) with poly(d ‐lactide) (PDLA) were prepared via solution‐casting method using CH2Cl2 as solvent. The poly(l ‐lactide) (PLLA) segments of PTLG with PDLA chain constructed as stereocomplex structures and growth stereocomplex crystals of PLA (sc‐PLA). The effects of sc‐PLA crystals on thermal behavior, mechanical properties, thermal decomposition of the PTLG/PDLA blends were investigated, respectively. The differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results showed that the total crystallinity of the PTLG/PDLA blends was increased with the PDLA content increasing. Heterogeneous nucleation of sc‐PLA crystals induced crystallization of the PLLA segments in PTLG. The crystallization temperature of samples shifted to 107.5°C for the PTLG/PDLA‐20 blends compared with that of the PTLG matrix, and decreased the half‐time of crystallization. The mechanical measurement results indicated that the tensile strength of the PTLG/PDLA blends was improved from 21.1 MPa of the PTLG matrix to 39.5 MPa of PTLG/PDLA‐20 blends. The results of kinetics of thermal decomposition of the PTLG/PDLA blends by TGA showed that the apparent activation energy of the PTLG/PDLA blends was increased from 59.1 to 72.1 kJ/mol with the increasing of the PDLA content from 3 wt% to 20 wt%, which indicated the enhancement of thermal stability of the PTLG/PDLA blends by addition of PDLA. Furthermore, the biocompatibility of the PTLG/PDLA blends cultured with human adipose‐derived stem cells was evaluated by CCK‐8 and live/dead staining. The experiment results proved the PTLG/PDLA blends were a kind of biomaterial with excellent physical performances with very low cytotoxicity.  相似文献   

18.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

19.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

20.
Organic montmorillonite (OMMT) and the one‐dimensional functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into poly(L ‐lactide) (PLLA) to prepare PLLA/OMMT and PLLA/FMWCNT nanocomposites, respectively. The effects of nanofillers on melt crystallization and cold crystallization of PLLA were comparatively investigated by using polarized optical microcopy, differential scanning calorimetry and wide angle X‐ray diffraction. The results show that FMWCNTs exhibit higher nucleation efficiency for the melt crystallization of PLLA, whereas OMMT is the better one for the cold crystallization of PLLA. Rheological properties show that both OMMT and FMWCNTs at relatively higher concentrations can form the percolated network structure in the PLLA matrix, however, the latter nanocomposites exhibit relatively denser or more compact percolated networks. The difference of the networks between OMMT and FMWCNTs is suggested to be the main reason for the different cold crystallization behaviors observed in the PLLA/OMMT and PLLA/FMWCNT nanocomposites. The dynamic mechanical analysis measurements show that OMMT is the better one to improve the stiffness of the nanocomposites in the present work. The thermogravimetric analysis measurements show that FMWCNTs have higher efficiency in improving the thermal stability of PLLA compared with OMMT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号