首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To develop thermal stable flavor, two glycosidic bound flavor precursors, geranyl-tetraacetyl-β-D-glucopyranoside (GLY-A) and geranyl-β-D-glucopyranoside (GLY-B) were synthesized by the modified Koenigs–Knorr reaction. The thermal decomposition process and pyrolysis products of the two glycosides were extensively investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and on-line pyrolysis-gas chromatography mass spectroscopy (Py-GC-MS). TG showed the T p of GLY-A and GLY-B were 254.6 and 275.7°C. The T peak of GLY-A and GLY-B measured by DSC were 254.8 and 262.1°C respectively. Py-GC-MS was used for the simply qualitative analysis of the pyrolysis products at 300 and 400°C. The results indicated that: 1) A large amount of geraniol and few by-products were produced at 300°C, the by-products were significantly increased at 400°C; 2) The characteristic pyrolysis product was geraniol; 3) The primary decomposition reaction was the cleavage of O-glycosidic bound of the two glycosides flavor precursors. The study on the thermal behavior and pyrolysis products of the two glycosides showed that this kind of flavor precursors could be used for providing the foodstuff with specific flavor during heating process.  相似文献   

2.
A novel approach for transesterification of methyl pyrrole-carboxylate with alcohols is reported. The transformation is performed with t-BuOK and a series of new pyrrole ester were obtained under the optimized conditions. The odor characteristics of the pyrrolyl esters were evaluated by GC–MS-O (gas chromatography-mass spectrometry-olfactometry). Among them, compounds of 4-isopropylbenzyl 1H-pyrrole-2-carboxylate (3d) and naphthalen-2-ylmethyl 1H-pyrrole-2-carboxylate (3 l) present nuts and almond-like aroma, respectively. The Py-GC/MS (pyrolysis–gas chromatography/mass spectrometry) approach was applied to evaluate the pyrolysis intermediates of the pyrrole esters in oxidative conditions. It clarified that 3d and 3 l occurred different degrees of pyrolysis throughout the pyrolysis temperature from 30 °C to 900 °C. In addition, the TG (thermogravimetry) and DSC (differential scanning calorimeter) approaches were applied to investigate at the thermal degradation process. They have good thermal stability under certain temperature according to the results of TG analysis.  相似文献   

3.
The thermal degradation behavior of polyacrylamide and poly(acrylamide-co-acrylate) was studied by differential scanning calorimetry, thermogravimetric analysis, gas chromatography/mass spectrometry, and carbon-13 solid state nuclear magnetic resonance. The degradation products over the temperature range of 115–450°C were characterized. Mechanisms are proposed for the degradation processes involved.  相似文献   

4.
The isomerization, polymerization, and degradation aspects of endo-N-phenylnadimide and endo-N-isobutylnadimide (NPNI-N and NIBNI-N) were investigated using infrared analysis (IR), differential thermal analysis (DTA), gel permeation chromatography (GPC), thermogravimetric analysis (TG), and capillary gas chromatography-mass spectroscopic (GC–MS) techniques. Although the endotherm related to the retro-Diels–Alder reaction is not registered in the DTA thermographs, on-line mass spectrometric studies revealed the occurrence of this process. The formation of the Diels–Alder adduct of cyclopentadiene with N-isobutylnadimide (NIBNI) during the polymerization of NIBNI-N is proved. GPC studies on NPNI-N and NIBNI-N cured at 300°C for 3.0 h showed the average degree of polymerization to be three to four. The polymers obtained by curing NPNI-N and NIBNI-N at 300°C for 3.0 h showed 109.8 kJ/mol as the activation energy for degradation. The dynamic and isothermal pyrolysis studies clearly indicated the presence of intact norbornyl units in the polymer, and the breakage of ? CH2? bridges in the strained norbornyl structural elements was found to be the point of aromatization during degradation.  相似文献   

5.
In the present study, the metabolism of ritonavir was explored in the presence of rCYP3A4 using a well‐established strategy involving liquid chromatography–mass spectrometry (LC–MS) tools. A total of six metabolites were formed, of which two were new, not reported earlier as CYP3A4‐mediated metabolites. During LC–MS studies, ritonavir was found to fragment through six principal pathways, many of which involved neutral loss of CO2, as indicated through 44‐Da difference between masses of the precursors and the product ions. This was unusual as the drug and the precursors were devoid of a terminal carboxylic acid group. Apart from the neutral loss of CO2, marked differences were also observed among the fragmentation pathways of the drug and its metabolites having intact N‐methyl moiety as compared to those lacking N‐methyl moiety. These unusual fragmentation behaviours were successfully explained through energy distribution profiles by application of the density functional theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

7.
The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two‐dimensional data of liquid–liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N‐benzyl‐2‐methylaziridine, phenethylamine, N ,N ,α‐trimethylamine, phenethylamine, N ,α,α‐trimethylmethamphetamine, N‐acetylmethamphetamine, N‐formylmethamphetamine, and other chemicals were identified. A route‐specific impurity, N‐benzyl‐2‐methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N ,α,α‐trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample.  相似文献   

8.
The thermal decomposition behavior and the pyrolysis products of benzyl‐2,3,4,6‐tetra‐O‐acetyl‐β‐D‐glucopyranoside (BGLU) were studied with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry at temperatures of 300, 500 and 700 °C at 0.062 Pa. Several pyrolysis products and intermediates were identified by the measurement of photoionization mass spectra at different photon energies. The results indicated that the primary decomposition reaction was the cleavage of O‐glycosidic bond of the glycoside at low temperature, proven by the discoveries of benzyloxy radical (m/z = 107) and glycon radical (m/z = 331) in mass spectra. As pyrolysis temperature increased from 300 to 700 °C, two possible pyrolytic modes were observed. This work reported an application of synchrotron VUV photoionization mass spectrometry in the study of the thermal decomposition of glycoside flavor precursor, which was expected to help understand the thermal decomposition mechanism of this type of compound. The possibility of this glycoside to be used as a flavor precursor in high temperature process was evaluated.  相似文献   

9.
A phosphorus and silicon containing liquid monomer (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide–vinyltrimethoxysilane (DOPO–VTS)) was synthesized by the reaction between DOPO and VTS. DOPO–VTS and methacryloxypropyltrimethoxylsilane were introduced into unsaturated polyester resin to prepare flame retardant UPR/SiO2 (FR‐UPR/SiO2) hybrid materials by sol–gel method and curing process. DOPO–VTS contributes excellent flame retardancy to UPR matrix, which was confirmed by the limiting oxygen index and microscale combustion calorimeter results. The thermogravimetric analysis (TGA) results indicate that the FR‐UPR/SiO2 hybrid materials possess higher thermal stability and residual char yields than those of pure UPR at high temperature region. The thermal degradation of materials was investigated by TGA/infrared spectrometry (TG‐IR) and real‐time infrared spectrometry (RT‐IR), providing insight into the thermal degradation mechanism. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphologies and chemical components of the residual char. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The development of new ionic salt as green propellants is one of intense investigations to replace toxic N, N′‐dimethylhydrazine. A new energetic salt N, N′,N′′‐tri(propan‐2‐ylidene)methanetriamium dinitramide (NTAGDN) based on dinitramide was synthesized by reacting silver dinitramide with triaminoguanidinium chloride. The structure of this new energetic salt was confirmed by single‐crystal X‐ray diffraction, elemental analysis, Fourier transform infrared spectrometry, ultraviolet‐visible spectrophotometry, and nuclear magnetic resonance spectroscopy. NTAGDN crystallizes in the orthorhombic space group R$\bar{3}$ . Thermal decomposition was studied by differential scanning calorimetry, differential thermal analysis, and thermogravimetric tandem infrared spectrometry. Results indicated that NTAGDN exhibited excellent resistance to thermal decompositions of up to 470 K and incurred an 80.54 % mass loss between 450 and 523 K via exothermic decomposition. The kinetic parameters of NTAGDN thermal decomposition were also obtained from the differential thermal analysis data by Kissinger's method with Ea = 125.46 kJ · mol–1. Moreover, based on the Kamlet‐Jacobs formula, the detonation velocity and detonation pressure of NTAGDN were calculated as 6.3 km · s–1 and 15 GPa, respectively.  相似文献   

11.
Chemical composition of oils and fats used in the biodiesel synthesis can influence in processing and storage conditions, due to the presence of unsaturated fatty acids. An important point is the study of the biodiesel thermal stability to evaluate its quality using thermal analysis methods. In this study the thermal stabilities of the poultry fat and of their ethyl (BEF) and methyl (BMF) biodiesels were determined with the use of thermogravimetry (TG/DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), in different atmospheres. The TG/DTG curves of the poultry fat in synthetic air presented three decomposition steps while only one step was observed in nitrogen (N2) atmosphere. The DSC results indicated four exothermic enthalpic transitions in synthetic air and an endothermic transitions in N2 atmosphere attributed to the combustion process and to the volatilization and/or decomposition of the fatty acids, respectively. For both biodiesels the TG/DTG curves in air indicated two mass loss steps. In the DSC curves four exothermic transitions were observed in synthetic air besides an endothermic one in N2 atmosphere.  相似文献   

12.
A selective and sensitive analytical method was developed for enantiomeric separation and determination of N‐methyl‐DL‐aspartic acid (NMA). The method involved the conversion of each enantiomer into N‐ethoxycarbonylated (S)‐(+)‐2‐octyl ester derivative for the direct separation by gas chromatography–mass spectrometry (GC‐MS). The diastereomeric derivatives showed characteristic mass spectral properties for analysis by selected ion monitoring mode (SIM) and enabling enantioseparation on an achiral capillary column. Two enantiomers were baseline separated, and the detection limits for N‐methyl‐L‐aspartic acid (NMLA) and N‐methyl‐D‐aspartic acid (NMDA) were 0.07 and 0.03 ng/g, respectively. When applied to rat brain tissues for absolute configuration of NMA, only NMDA was determined, while NMLA was monitored as lower than the limit of detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A novel two-dimensional metal organic framework MgBTC [MgBTC(OCN)2·2H2O, where BTC = 1,3,5-benzenetricarboxylate] has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgBTC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 190 to 350 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgBTC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgBTC was further investigated through thermogravimetry (TG)-mass spectrometer (MS). Four stages of mass loss were observed in the TG curve. TG-MS curve indicated that the products of oxidative degradation of MgBTC are H2O, N2, CO2 and CO. The powder XRD showed that the mixture after TG contains MgO and graphite.  相似文献   

15.
A new Zn(II) 2-chlorobenzoate complex, [Zn(2-ClC6H4COO)2(nad)2] (nad = nicotinamide), was synthesized and characterized by elemental analysis, infrared (IR) spectroscopy, mass spectrometry, thermal analysis, and X-ray structure determination. The mechanism of thermal decomposition of the complex was studied by TG/DTG, DTA, IR spectroscopy, and mass spectrometry. The thermal decomposition is characterized as a two-step process. Zinc oxide was found as the final product of the thermal decomposition performed up to 900°C. Mass spectrometry was used to determine the volatiles released during thermal decomposition. The IR spectrum indicates that carboxylate is coordinated to zinc in monodentate coordination. [Zn(2-ClC6H4COO)2(nad)2] crystallizes in the monoclinic system, space group Pn, a = 10.376(2) Å, b = 10.100(1) Å, c = 12.604(1) Å, β = 100.79(1)°. The zinc is tetrahedrally coordinated by two nitrogens of nicotinamide and two oxygens of 2-chlorobenzoate.  相似文献   

16.
An efficient bio‐safe cyclophosphazene flame retardant, 1,5,9,13,16,20‐Hexaoxa‐7,14,21‐triaza‐6λ4,8λ4,5λ4‐triphosphatrispiro[5.1.5.1.5.1]heneicosa‐6,8(14),15(21)‐triene (HCPO), was synthesized, and then was incorporated into polylactic acid (PLA) to improve the fire safety. The chemical structure of HCPO was confirmed by Fourier‐transformed infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The thermal stability of the compound was characterized by thermogravimetric (TG) analyzer. The cytotoxic effects of HCPO to cells were evaluated. Fire behavior and thermal stability of PLA composites were investigated by vertical burning, limiting oxygen index (LOI), TG analysis, and cone calorimeter. The morphology of residual charring was observed by scanning electron microscope. The results showed HCPO was bio‐safe, and highly effective to enhance the flame retardancy of PLA composites. The LOI value was increased from 18.4 to 27.5 and UL‐94 grade achieved V‐0 for the PLA composite containing only 2% HCPO and 2% pentaerythrotol. It was demonstrated that intermolecular cross‐linking reaction between pentaerythrotol and HCPO in high temperature range could accelerate the formation of compact char layers.  相似文献   

17.
Water soluble alternating copolymers were prepared by oxidative free radical copolymerization of 4‐vinylbenzyl methoxypoly(oxyethylene) ether (PEGSt) and molecular oxygen at 50 °C. NMR spectroscopy established alternate sequence of PEGSt and peroxy bonds ( O O ) along the polymer main‐chain. The obtained polymers show temperature induced hydrophilic to hydrophobic phase separation, confirmed by UV‐visible spectroscopy and dynamic light scattering. The cloud point temperature (TCP) of the polymers can be tuned by changing the chain length of side‐chain poly(ethylene oxide) and incorporation of hydrophobic methyl methacrylate in the copolyperoxides. Exothermic degradation of these polyperoxides was confirmed by differential scanning calorimetry and the degradation products have been characterized by electron impact mass spectroscopy. Finally, N,N‐dimethylacrylamide was polymerized in the presence of these polyperoxides in toluene, highlighting their potential as polymeric free radical initiator during polymerization of vinyl monomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2030–2038  相似文献   

18.
Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium‐pressure liquid chromatography combined with macroporous resin and reversed‐phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high‐performance liquid chromatography. After fractionation using HPD‐100 column chromatography, a 30% ethanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds—deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin‐1‐O‐β‐d‐ gentiobioside, and geniposide—were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high‐performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large‐scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine.  相似文献   

19.
In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG #, ΔH # and ΔS #) for first step decomposition of investigated organophosphorous were determined.  相似文献   

20.
Two hyphenated techniques, gas chromatography–mass spectrometry and gas chromatography–atomic emission detection, have been used to identify the degradation products of the acaricide fluvalinate in a methanol solution of the commercially available formulation Mavrick, as well as in honey from beehives treated with this product. The major degradation products were 2-chloro-4-trifluoromethylaniline (I), methyl 2-[2-chloro-4-trifluoromethylaniline]-3-methylbutanoate (II), N-(2-chloro-4-trifluoromethyl-phenyl)valine (III), and 3-phenoxybenzaldehyde (IV). Fluvalinate in honey is gradually degraded, 3-phenoxybenzaldehyde being the most abundant residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号