首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35?%, which translates to approximately 79?% of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

2.
A novel TiO(2) double-layer (DL) film consisting of TiO(2) hollow spheres (HSs) as overlayer and single-crystalline TiO(2) nanorod arrays (RAs) as underlayer was designed as the photoanode of dye-sensitized solar cells (DSSCs). This new-typed TiO(2) HS/RA DL film could significantly improve the efficiency of DSSCs owing to its synergic effects, i.e. the relatively large specific surface area of TiO(2) HSs for effective dye adsorption, enhanced light harvesting capability originated from TiO(2) RA film, and rapid interfacial electron transport in one-dimensional TiO(2) nanorod arrays. The overall energy-conversion efficiency of 4.57% was achieved by the formation of TiO(2) DL film, which is 16% higher than that formed by TiO(2) HS film and far larger than that formed by TiO(2) RA film (η=0.99%). The light absorption and interfacial electron transport, which play important roles in the efficiency of DSSCs, were investigated by UV-vis absorption spectra and electrochemical impedance spectra.  相似文献   

3.
This paper reports a reproducible low-temperature solution-based process for the preparation of ZnO films of nanorod arrays and their application to dye-sensitized solar cells (DSSCs). A two-step approach was employed for the epitaxial growth of ZnO. We began with the preparation of a (002)-oriented ZnO seed layer by the electrochemical deposition method. After the treatment the substrate was soaked in an aqueous solution containing ZnCl2 and complex agents. A large-scale fabrication of ZnO nanorod arrays on transparent conductive oxides has been achieved after soaking at 95 degrees C for 1-48 h. The as-deposited ZnO film has a large surface area, therefore permitting a great amount of dye loading. The individually separated nanorod forms a linear nanoroad which should show more effective electron transportation than that in the film derived from ZnO powders. The DSSCs using these ZnO films as photoelectrodes show a conversion efficiency of about 0.6% at AM1.5.  相似文献   

4.
A distinctive method is proposed by simply utilizing ultrasonic technique in TiO_2 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells(DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO_2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on40 kHz ultrasonic(within 1 h) with N719 exhibits a Vocof 789 mV, Jscof 14.94 mA/cm~2 and fill factor(FF)of 69.3, yielding power conversion efficiency(PCE) of 8.16%, which is higher than device regularly dyed for12 h(PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency(PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading,larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy(EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs.  相似文献   

5.
陈红征 《高分子科学》2013,31(6):879-884
Improved hybrid solar cells consisting of vertical aligned cadmium sulfide (CdS) nanorod arrays and interpenetrating polythiophene (P3HT) have been achieved via modification of CdS nanorod surface by using conjugated N719 dye. The complete infiltration of P3HT between CdS nanorods interspacing was verified by scanning electron microscopy. By employing absorption and photoluminescence spectra, and current-voltage characterization the interaction between N719 molecules and CdS nanorods/P3HT interface was explored, and the role of N719 dye on the improvement of device performance was discussed.  相似文献   

6.
We report a comparison of charge transport and recombination dynamics in dye-sensitized solar cells (DSSCs) employing nanocrystalline TiO(2) and SnO(2) films and address the impact of these dynamics upon photovoltaic device efficiency. Transient photovoltage studies of electron transport in the metal oxide film are correlated with transient absorption studies of electron recombination with both oxidized sensitizer dyes and the redox couple. For all three processes, the dynamics are observed to be 2-3 orders of magnitude faster for the SnO(2) electrode. The origins of these faster dynamics are addressed by studies correlating the electron recombination dynamics to dye cations with chronoamperometric studies of film electron density. These studies indicate that the faster recombination dynamics for the SnO(2) electrodes result both from a 100-fold higher electron diffusion constant at matched electron densities, consistent with a lower trap density for this metal oxide relative to TiO(2), and from a 300 mV positive shift of the SnO(2) conduction band/trap states density of states relative to TiO(2). The faster recombination to the redox couple results in an increased dark current for DSSCs employing SnO(2) films, limiting the device open-circuit voltage. The faster recombination dynamics to the dye cation result in a significant reduction in the efficiency of regeneration of the dye ground state by the redox couple, as confirmed by transient absorption studies of this reaction, and in a loss of device short-circuit current and fill factor. The importance of this loss pathway was confirmed by nonideal diode equation analyses of device current-voltage data. The addition of MgO blocking layers is shown to be effective at reducing recombination losses to the redox electrolyte but is found to be unable to retard recombination dynamics to the dye cation sufficiently to allow efficient dye regeneration without resulting in concomitant losses of electron injection efficiency. We conclude that such a large acceleration of electron dynamics within the metal oxide films of DSSCs may in general be detrimental to device efficiency due to the limited rate of dye regeneration by the redox couple and discuss the implications of this conclusion for strategies to optimize device performance.  相似文献   

7.
染料敏化La~(3+)掺杂的TiO_2纳晶薄膜制备及其光电性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备出La3+掺杂的TiO2纳米粉体材料,通过料浆喷涂工艺制得掺杂La3+的TiO2薄膜并将其以N719染料敏化制成染料敏化太阳能电池(DSSC)。以X射线衍射(XRD)、扫描电镜(SEM)和DSSC测试系统对制得的La3+掺杂的TiO2纳米粉体材料、相应的La3+掺杂的TiO2薄膜以及制成的DSSC分别进行测试表征,研究了La3+掺杂对TiO2晶型和染料敏化太阳能电池性能的影响。XRD测试结果表明,La3+的掺杂改善了TiO2的颗粒分布;电池的测试结果说明,La3+掺杂量为0.5%,煅烧温度为450℃时制备的纳米TiO2膜DSSC电池性能最佳,光电转换效率达1.926%。  相似文献   

8.
Ethanol-soluble amphiphilic TiO(2) nanoparticles (NPs) of average diameter ~9 nm were synthesized, and an α-terpineol-based TiO(2) paste was readily prepared from them in comparatively few steps. When used for fabrication of photoelectrodes for dye-sensitized solar cells (DSSCs), the paste yielded highly transparent films and possessing greater-than-typical, thickness-normalized surface areas. These film properties enabled the corresponding DSSCs to produce high photocurrent densities (17.7 mA cm(-2)) and a comparatively high overall light-to-electrical energy conversion efficiency (9.6%) when deployed with the well-known ruthenium-based molecular dye, N719. These efficiencies are about ~1.4 times greater than those obtained from DSSCs containing photoelectrodes derived from a standard commercial source of TiO(2) paste.  相似文献   

9.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye‐sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron‐deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO2 surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

10.
We designed and synthesized a series of novel electron‐accepting zinc(II)phthalocyanines (ZnPc) and probed them in p‐type dye sensitized solar cells (p‐DSSCs) by using CuO as photocathodes. By realizing the right balance between interfacial charge separation and charge recombination, optimized fill factors (FFs) of 0.43 were obtained. With a control over fill factors in p‐DSSCs in hand we turned our attemtion to t‐DSSCs, in which we combined for the first time CuO‐based p‐DSSCs with TiO2‐based n‐DSSCs using ZnPc and N719. In the resulting t‐DSSCs, the VOC of 0.86 V is the sum of those found in p‐ and n‐DSSCs, while the FF remains around 0.63. It is only the smaller Jscs in t‐DSSCs that limits the efficiency to 0.69 %.  相似文献   

11.
One‐dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye‐sensitized solar cells (DSSCs) due to their superior electron‐transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three‐dimensional (3D) rutile‐nanorod‐based network structure directly grown on fluorine‐doped tin oxide (FTO) substrates was developed by using a facile two‐step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head‐caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light‐harvesting efficiency was increased due to an enhanced light‐scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open‐circuit voltage decay (OCVD) analyses confirmed that the electron‐recombiantion rate was reduced on formation of the nanorod‐based 3D network for fast electron transport. As a resut, a light‐to‐electricity conversion efficiency of 6.31 % was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2.  相似文献   

12.
One-dimensional and quasi-one-dimensional semiconductor nanostructures are desirable for dye-sensitized solar cells (DSSCs), since they can provide direct pathways for the rapid collection of photogenerated electrons, which could improve the photovoltaic performance of the device. Quasi-1D single-crystalline anatase TiO(2) nanostructures have been successfully prepared on transparent, conductive fluorine-doped tin oxide (FTO) glass with a growth direction of [101] through a facile hydrothermal approach. The influences of the initial titanium n-butoxide (TBT) concentration, hydrothermal reaction temperature, and time on the length of quasi-1D anatase TiO(2) nanostructures and on the photovoltaic performance of DSSCs have been investigated in detail. A power conversion efficiency of 5.81% has been obtained based on the prepared TiO(2) nanostructure photoelectrode 6.7 μm thick and commercial N719 dye, with a short-circuit current density of 13.3 mA cm(-2) , an open-circuit voltage of 810 mV, and a fill factor of 0.54.  相似文献   

13.
We investigated electron transport kinetics in terms of electron diffusion coefficient (D) and electron lifetime (tau) in coumarin-dye-sensitized nanocrystalline TiO2 electrodes by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). We found that the values of tau for coumarin-dye-sensitized TiO2 electrodes were much shorter than that for an electrode coated with a Ru complex (N719 dye), suggesting that the back-electron-transfer process corresponding to recombination between conduction-band electrons in the TiO2 and I3- ions in the electrolyte occurs more easily in coumarin-dye-sensitized solar cells. In addition, the values of tau depended on the kind of coumarin dye, each of which has a different number of thiophene moieties, suggesting that the molecular structure of the adsorbed dyes also affects the kinetics of electron transport in the TiO2 electrodes.  相似文献   

14.
A series of metal‐free benzotriazole‐based dipolar dyes have been developed as sensitizers for dye‐sensitized solar cells (DSSCs). Different heteroaromatic rings such as furan, thiophene, and selenophene, were used in combination with benzotriazole as the conjugated spacer group. Light harvesting, charge recombination, and electron injection of the cells fabricated are affected by the heteroaromatic ring used in the spacer. The DSSC with the thiophene‐containing dye has the highest conversion efficiency of 6.20 %, which reaches 85 % of the standard cell based on N719.  相似文献   

15.
In this paper we focus upon the electron injection dynamics in complete dye-sensitized nanocrystalline metal oxide solar cells (DSSCs). Electron injection dynamics are studied by transient absorption and emission studies of DSSCs and correlated with device photovoltaic performance and charge recombination dynamics. We find that the electron injection dynamics are dependent upon the composition of the redox electrolyte employed in the device. In a device with an electrolyte composition yielding optimum photovoltaic device efficiency, electron injection kinetics exhibit a half time of 150 ps. This half time is 20 times slower than that for control dye-sensitized films covered in inert organic liquids. This retardation is shown to result from the influence of the electrolyte upon the conduction band energetics of the TiO2 electrode. We conclude that optimum DSSC device performance is obtained when the charge separation kinetics are just fast enough to compete successfully with the dye excited-state decay. These conditions allow a high injection yield while minimizing interfacial charge recombination losses, thereby minimizing "kinetic redundancy" in the device. We show furthermore that the nonexponential nature of the injection dynamics can be simulated by a simple inhomogeneous disorder model and discuss the relevance of our findings to the optimization of both dye-sensitized and polymer based photovoltaic devices.  相似文献   

16.
The present investigation described the performance of dye-sensitized solar cells (DSSCs) based on various sensitizers applied on TiO2-Nb2O5 core/shell photoanode film. The novel photoanodes were prepared using composite of TiO2 nanoparticles (TNPs) and TiO2 nanorods (TNRs) as core (TNPRs) layer with Nb2O5 shell coating. As well, tantalum pentoxide (Ta2O5), a blocking layer applied over the core/shell film. The DSSCs were fabricated based on various sensitizers namely zinc phthalocyanine, indoline, indigo carmine, zinc porphyrin, N719, coumarin NKX-2700, polymer dye, quantum dots (QDs), perylene and squaraine. The IV characteristics of the DSSCs, photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and photoconversion efficiency (PCE) were determined under illumination of AM 1.5 G. Electrochemical impedance spectroscopy (EIS) analysis is carried out to study the charge transport and life-time of charge carriers at photoanode/dye/electrolyte interface of the DSSCs. The IV and EIS results explicated that the core/shell with blocking layers were able to alleviate the electron transport and suppressed charge recombination at photoanode/dye/electrolyte interface of the DSSCs. Concerning the sensitizers, PCE of the DSSCs exemplify the order N719 > zinc porphyrin > coumarin NKX-2700 > indoline > squaraine > QDs > zinc phthalocyanine > perylene > polymer dye > indigo carmine dye. The results of the present work demonstrated that among the sensitizers studied, N719 showed the highest PCE and fill factor. Besides, the metal-free organic sensitizers (coumarin NKX-2700 and indoline) exhibited comparable PCE as compared to N719.  相似文献   

17.
A route is reported for the synthesis of two electron‐accepting phthalocyanines featuring linkers with different lengths as sensitizers for p‐type dye‐sensitized solar cells (DSSCs). Importantly, our devices based on novel nanorod‐like CuO photocathodes showed high efficiencies of up to 0.191 %: the highest value reported to date for CuO‐based DSSCs.  相似文献   

18.
采用水热法制备出Al3+掺杂二氧化钛薄膜,通过玻璃棒涂于导电玻璃上,在450°C的温度下烧结并将其用N3染料敏化制成染料敏化太阳能电池(DSSCs).通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)及DSSCs测试系统对其进行了测试表征,研究了Al3+掺杂对TiO2晶型及染料敏化太阳能电池的光电性能影响.XPS数据显示Al3+成功掺杂到了TiO2晶格内,由于Al3+的存在,对半导体内电子和空穴的捕获及阻止电子/空穴对的复合发挥重要作用.莫特-肖特基曲线显示掺杂Al3+后二氧化钛平带电位发生正移,并导致电子从染料注入到TiO2的驱动力提高.DSSCs系统测试结果表明,Al3+掺杂的TiO2薄膜光电效率达到6.48%,相对于无掺杂的纯二氧化钛薄膜光电效率(5.58%),其光电效率提高了16.1%,短路光电流密度从16.5mA·cm-2提高到18.2mA·cm-2.  相似文献   

19.
The aim of this work is to evaluate the amount of N719 dye in TiO2 films for DSSCs by thermogravimetric analysis coupled with mass spectrometry (TG-MS) in comparison with the traditional method based on the dye extraction in NaOH solutions. The characterization was carried out on TiO2 films applied on FTO glasses by automatic screen printing method. For all the samples, TG-MS showed three well defined steps. The first, below 100 °C and coupled to an endothermic signal was due to water release. From 200 to about 300 °C, there was the release of CO2 coming from decarboxylation reaction of N719. The last exothermic step was due to the combustion of organic residues. As the decarboxylation reaction occurs with release of 4 moles of CO2 per mole of N719, it was used to determine the dye loading of the samples that resulted in the range 7?15 wt% well agreeing the relevant content of dye obtained by desorption with NaOH.  相似文献   

20.
Water plays an important role in N719 sensitization of ZnO films for application as photoanodes in DSC devices. The role of water content in ethanolic N719 sensitization solutions was examined resorting to N719-solvent interaction studies based on Kamlet-Taft solvatochromic parameters. Results show that as the water content increases, solvent’s HBA ability decreases, hindering dye aggregation in solution and increasing the fraction of dye carboxylic groups available for anchorage onto the charged ZnO surface. The impact of dye-dye-solvent equilibria in solution on ZnO nanorod films sensitization and device behavior was evaluated. Devices assembled with films sensitized in N719 solutions containing equal parts of ethanol and water showed a twofold increase in short-circuit current densities when compared to those sensitized in ethanol only, despite exhibiting significantly less stained films. Data indicate that the presence of water in the sensitization solution reduces the amount of dye aggregates in solution and on the ZnO surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号