首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

The possibility of using anhydrous sodium pyrophosphate and its decahydrate in transesterification of triacyl glycerides (with sunflower and rapeseed oils as examples) with methanol to obtain biodiesel fuel was examined. As shown by gas-chromatographic analysis, at the vegetable oil to methanol ratio of 1: 12, temperature of 65°C, reaction time of 2 h, and catalyst concentration of no less than 6 wt %, the maximal yield of methyl esters of fatty acids (biodiesel) was 93 and 69% when using Na4P2O7 and Na4P2O7·10H2O, respectively. The catalytic effect of sodium pyrophosphate in the transesterification of triacyl glycerides was attributed to its methanolysis with the formation of sodium methylate. Water present in sodium pyrophosphate decahydrate causes hydrolysis of the formed sodium methylate; therefore, the yield of methyl esters of fatty acids is lower than with anhydrous pyrophosphate. Anhydrous sodium pyrophosphate can be used repeatedly no less than five times without significant decrease in the yield of methyl esters of fatty acids. Sodium pyrophosphate can be recommended for use in transesterification with other esters and alcohols.

  相似文献   

2.
《中国化学会会志》2018,65(6):681-686
Fe3O4@Gly nanoparticles were synthetized by coprecipitation and studied in the transesterification of soybean oil and methanol to determine its performance for biodiesel synthesis. The magnetism and catalytic performance of Fe3O4@Gly alkaline catalyst were investigated in detail. With a catalyst dosage 1.5 wt %, methanol/soybean oil ratio of 15:1, reaction temperature of 65 °C, and a reaction time of 3 h, the highest yield of biodiesel was 95.8%. The strong base catalyst CaO was used as comparison, from which it was seen that Fe3O4@Gly was more hydrophobic than the former. Moreover, because of the complete dissolution of oleic acid in methanol, Fe3O4@Gly could make better contact with oleic acid, which made it perform far better than pure CaO in oleic acid. In addition, after four times recycling, the yield of biodiesel was still 86.6%. The results show that Fe3O4@Gly possesses excellent properties of acid resistance and recyclability. The catalyst can be a high‐efficiency alkaline heterogeneous catalyst for biodiesel production.  相似文献   

3.
李伟  张成  李鑫  谭鹏  周安鹂  方庆艳  陈刚 《催化学报》2018,39(10):1653-1663
作为引起酸雨、光化学烟雾、雾霾等大气污染问题的主要根源,氮氧化物(NOx)的防治已成为亟待解决的问题.选择性催化还原技术作为最成熟有效的脱硝技术,目前已经被广泛应用于各燃煤电厂.低温脱硝催化剂具有优秀的低温活性,使得脱硝装置可以安放在脱硫装置和除尘装置下游,受到了学者广泛的研究.目前低温脱硝催化剂的研究主要是对催化剂进行改性以提高催化剂的性能,已有许多研究报道了Sn、Ni、Co、Zr、Cr、Ni等对催化剂的改性影响.Ho作为一种改性元素被应用于光催化领域,能提高TiO2的光催化能力.但Ho应用于脱硝领域的研究鲜有报道,其氧化物具有酸性位点有助于脱硝反应,因此研究Ho对低温SCR催化剂的改性作用具有重要意义.本文采用浸渍法制备Ho掺杂的Mn-Ce/TiO2催化剂,研究了Ho的掺杂对于Mn-Ce/TiO2催化剂低温脱硝性能的影响,同时还研究了烟气中的SO2和H2O对催化剂活性的影响,并利用XPS、XRD、H2-TPR、NH3-TPD等表征方法从物理性质和化学性质两方面对Ho改性的影响机理进行了研究.研究发现,Ho的掺杂能提高Mn-Ce/TiO2催化剂的脱硝能力,有助于催化剂N2选择性的提高.分析表明,Ho的掺杂有助于催化剂比表面积的提升,且能提高催化剂的酸性,有利于催化剂对NH3的吸附,从而提高催化剂的性能.XPS表征结果表明Ho掺杂后的催化剂具有更高的化学吸附氧浓度和较高的Mn4+/Mn3+比例, 使得脱硝反应更容易进行.改性后催化剂的抗水抗硫实验结果表明,Ho的掺杂能够提高催化剂的抗水抗硫性能.XRD结果表明,抗水抗硫实验后催化剂表面形成了硫酸铵盐,硫酸铵盐的形成会堵塞催化剂表面的活性位,限制脱硝反应的进行,从而影响催化剂的脱硝活性.同时,400°C下进行再生实验后的催化剂活性有所恢复,但是未能达到抗水抗硫实验前的活性,表明在抗水抗硫实验中催化剂表面形成了除硫酸铵盐以外的其他硫酸盐类.结合XPS和XRD表征结果,推断生成的盐类物质为硫酸锰和硫酸铈,从而导致再生后的催化剂的脱硝活性无法恢复到最初的活性水平.由此可以看出,硫酸盐的形成是催化剂在含硫气氛中失活的主要原因.  相似文献   

4.
This work presents the use of sulfated tin oxide enhanced with SiO2 (SO42−/SnO2-SiO2) as a superacid solid catalyst to produce methyl esters from Jatropha curcas oil. The study was conducted using the design of experiment (DoE), specifically a response surface methodology based on a threevariable central composite design (CCD) with α = 2. The reaction parameters in the parametric study were: reaction temperature (60°C to 180°C), reaction period (1 h to 3 h), and methanol to oil mole ratio (1: 6 to 1: 24). Production of the esters was conducted using an autoclave nitrogen pressurized reactor equipped with a thermocouple and a magnetic stirrer. The maximum methyl esters yield of 97 mass % was obtained at the reaction conditions: temperature of 180°C, reaction period of 2 h, and methanol to oil mole ratio of 1: 15. The catalyst amount and agitation speed were fixed to 3 mass % and 350–360 min−1, respectively. Properties of the methyl esters obtained fell within the recommended biodiesel standards such as ASTM D6751 (ASTM, 2003).  相似文献   

5.
Waste eggshells were considered for synthesising a precursor (CaO) for a heterogeneous catalyst, further impregnated by alkali caesium oxide (Cs2O). The following techniques were used to characterise the synthesised catalysts: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (CO2-TPD). The synthesised catalyst revealed its suitability for transesterification to produce biodiesel. The biodiesel production process was optimised, and it showed that the optimal biodiesel yield is 93.59%. The optimal set of process parameters is process temperature 80 °C, process time 90 min, methanol-to-oil molar ratio 8 and catalyst loading 3 wt.%. It has been found that the high basicity of the catalyst tends to give a high biodiesel yield at low methanol-to-oil ratio 8 when the reaction time is also less (90 min). The fuel properties of biodiesel also satisfied the standard limits defined by ASTM and the EN standards. Thus, the synthesised catalyst from waste eggshells is highly active, improved the biodiesel production conditions and PPSS oil is a potential nonedible source.  相似文献   

6.
The acidic and hydrogenating of Pt/SO42−-ZrO2-Al2O3 samples containing from 18.8 to 67.8 wt % Al2O3 as a support constituent were studied by the IR spectroscopy of adsorbed CO and pyridine, and the model reactions of n-heptane and cyclohexane isomerization on these catalysts were examined. The total catalyst activity in the conversion of n-heptane decreased with the concentration of Al2O3; this manifested itself in an increase in the temperature of 50% n-heptane conversion from 112 to 266°C and in an increase in the selectivity of isomerization to 94.2%. In this case, the maximum yield of isoheptanes was 47.1 wt %, which was reached on a sample whose support contained 67.8 wt % Al2O3. A maximum yield (69.6 wt %) and selectivity (93.7%) for methylcyclopentane formation from cyclohexane were also reached on the above catalyst sample. This can be explained by lower concentrations of Lewis and Br?nsted acid sites in the Pt/SO42−-ZrO2-Al2O3 system, as compared with those in Pt/SO42−-ZrO2. The experimental results allowed us to make a preliminary conclusion that the Pt/SO42−-ZrO2-Al2O3 catalyst whose support contains 67.8 wt % Al2O3 is promising for use in the selective hydroisomerization of benzene-containing gasoline fractions in the thermodynamically favorable process temperature range of 250–300°C.  相似文献   

7.
Racemic 1-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 1 and 1-methyl-1,2,3,4-tetrahydro-ß-carboline 3 were resolved through lipase-catalysed asymmetric acylation on the secondary amino group. High enantioselectivities (E?>200) were observed when the acylation of racemic 1 was performed with phenyl allyl carbonate in the presence of Candida rugosa lipase in toluene at 40?°C or with Candida antarctica lipase B in tert-butyl methyl ether at 50?°C. Excellent enantioselectivity (E?>200) characterised the CAL-B-catalysed acylation of racemic 3 with phenyl allyl carbonate in the presence of triethylamine in tert-butyl methyl ether at 50?°C. The product (R)-carbamates (ee?>97%) were hydrolysed into the corresponding (R)-enantiomers of the free amines 1 and 3 (ee?=?99%) with the use of Pd2(dba)3·CHCl3 catalyst.  相似文献   

8.
酸性离子液体催化油酸酯化合成生物柴油   总被引:10,自引:0,他引:10  
酸性离子液体具有催化活性好、选择性高及易于回收等优点,是一种应用前景非常好的环境友好的酸性催化剂,在生物柴油合成反应中具有重大的理论意义和应用价值. 本文以油酸和甲醇为原料,探讨了7种不同酸性离子液体在生物柴油合成反应中的催化效应. 研究表明,离子液体酸性越强,催化酯化活性越高;引入磺酸基团可大大增强离子液体Brönsted酸性,使其在酯化反应中发挥溶剂/催化剂的双重作用,促进酯化反应向产物方向进行,达到高产率,因而1-丁基磺酸-3-甲基咪唑硫酸氢盐([BHSO3MIM]HSO4)催化效果最好. 此外,系统研究了[BHSO3MIM]HSO4催化油酸与甲醇酯化反应,并采用响应面法优化了反应条件. 结果发现,该反应的最适醇酸摩尔比、催化剂用量、反应温度及反应时间分别为4:1,10%(基于油酸的质量),130 ℃和4 h;在此条件下,生物柴油产率为97.7%. [BHSO3MIM]HSO4连续使用10批次后,仍能保持初始催化活性的95.6%,表现出极好的操作稳定性. 另外,利用该离子液体催化游离脂肪酸含量为72%的废油脂生产生物柴油,反应6 h可获得产率94.9%. 可见,[BHSO3MIM]HSO4在酯化生产生物柴油方面具有巨大的应用潜力.  相似文献   

9.
A novel ZnO/Ca(OH)2/KF solid base catalyst was prepared by the grinding method and applied to biodiesel synthesis by the transesterification of soybean oil. The effect of various parameters such as KF molar amount, calcination temperature, the amount of catalyst, molar ratio of methanol to oil, reaction temperature, and time on the activity of the catalyst were investigated. The catalysts were characterized by several techniques of thermogravimetry/derivative thermogravimetry, X–ray diffraction, Hammett indicator method, and scanning electron microscopy. The analysis results indicated that the KF interacted with Ca(OH)2 and formed KCaF3 phase before calcination of the catalyst. The formed KCaF3 crystal phase was the main catalytic active component for the catalyst activity. In addition, the basicity of ZnO/Ca(OH)2/KF was greatly influenced by the different calcination temperates, and the catalyst activity was correlated closely with the basicity. A desired biodiesel yield of 97.6 % was obtained at catalyst amount of 3 %, methanol/oil of 12:1, and reaction time of 1.5 h at 65 °C.  相似文献   

10.
以Ho改性Fe-Mn/TiO_2低温SCR脱硝催化剂为研究对象,通过活性评价和一系列表征技术对其低温抗硫性能和催化剂的热还原再生进行研究。结果表明,硫酸铵((NH_4)_2SO_4)在催化剂表面的沉积以及活性组分硫酸化(MnSO_4)是催化剂硫中毒的主要原因。当烟气中的SO_2体积分数低于0.04%时,Fe_(0.3)Ho_(0.1)Mn_(0.4)/TiO_2催化剂呈现出良好的抗硫性。在此条件下,当切断SO_2的供应时催化剂的脱硝活性可获得显著恢复。当通入的SO_2体积分数增加至0.1%时,催化剂会发生不可逆失活。在体积分数5%NH_3气氛下,失活催化剂经过350℃的热还原再生处理60 min后,其微观结构和理化性质能够得到明显恢复,且NO_x转化率可以回升至80%左右。  相似文献   

11.
A novel ordered mesoporous catalyst was prepared from rice husk (MRH catalyst) through condensation–evaporation method in alkaline media. The process used cetyltrimethylammonium bromide (CTAB) as a structure-directing agent (template) and sulfonated biochar obtained from partial rice husk carbonization (SBRH) as precursor. Various parameters such as temperature and CTAB/SBRH mass ratios were investigated to improve the mesoporous structure. The chosen catalyst was based on its degree of order of the mesoporous channels, and its activity was also tested in the methanolysis of linseed oil to methyl esters which was considered as a valuable blending composition for commercial jet fuels. The results showed that the temperature and CTAB/SBRH mass ratio should be of 70 °C and 0.3/1, respectively. The catalyst samples were characterized by many techniques including X-ray diffraction (XRD), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ammonia-temperature programmed desorption (NH3-TPD). The methyl ester composition of the as-synthesized biofuel was determined using gas chromatography supported by mass spectroscopy detector (GC–MS). The results of the characterizations showed that the catalyst possessed superacidic sites (NH3-TPD) caused by –SO3H groups (confirmed by FT-IR analysis) and ordered mesoporous structure (XRD). The mesoporous channel distribution was also observed by TEM images. The methanolysis yield reached 93.5% (calculated through GC–MS analysis) at mild conditions with high purity of methyl ester products strongly proving the catalyst activity and selectivity.  相似文献   

12.
Fe3O4/ZnMg(Al)O solid base catalyst was prepared by calcining ZnMgAl‐LDHs grown on the surface of magnetic Fe3O4 synthesized by chemical coprecipitation. The magnetic property of the catalyst was studied by vibrating sample magnetometer. The results showed that the catalyst possessed excellent magnetic responsivity, and it could be recovered by external magnetic field. The magnetic catalyst was also characterized by ICP, TG‐DTG, XRD, SEM, EDS, TEM and N2 absorption‐desorption. It was found that the catalyst showed a unique porous structure. The reaction conditions affecting biodiesel yield were investigated, the biodiesel yield reached 94% was obtained under the optimal conditions. The biodiesel yield was still above 82% after 7 times of regeneration, and the catalyst can be easily separated and recycled.  相似文献   

13.
Orthorhombic perovskite Na0.1Ca0.9TiO3 nanorods were synthesized at low calcination temperature via alkali hydrothermal synthesis. The synthesized nanorods exhibits a square based prism morphology, with a width and length of 200–500 nm and 2–3 μm respectively. The structural, textural and basic characteristics of the catalyst were examined by SEM, TEM, XRD and BET. The growth direction of the nanorods was confirmed to be along the long symmetry [110] zone axis and the exterior surfaces are found to be polar (110) and (002) with either Ti or Ca exposed in those facets. The catalytic activity of the nanorods was investigated for the transesterification of the low-input Camelina Sativa oil and methanol to give the fatty acid methyl ester (FAME). Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Optimized biodiesel yield of 93 % was achieved with catalyst dosage of 6 % w/w, methanol to oil molar ratio of 36:1 at reaction temperature of 60 °C for 8 h.  相似文献   

14.
《中国化学》2017,35(11):1739-1748
The development of novel methods to obtain biofuels and chemicals from biomass has been an immediate issue in both academic and industrial communities. In this work, a series of novel catalysts were prepared and characterized by FT‐IR , TGA , XRD , SEM , TEM , ICP‐AES , NH3‐TPD and BET , which were applied for the conversion of hexose to 5‐hydroxymethylfurfural (HMF ). The Cr(Salten)‐MCM ‐41‐[(CH2 )3SO3HVIm ]HSO4 catalyst was the most active catalyst, and a glucose conversion of 99.8% with 50.2% HMF yield was obtained at 140 °C for 4 h in dimethyl sulfoxide (DMSO ). The effects of reaction temperature, reaction time, solvents and catalyst dosages were investigated in detail. MCM ‐41 immobilized acidic functional ionic liquid and chromium(III ) Schiff base complexes as heterogeneous catalysts can be easily recovered by simple filter treatment, exhibiting excellent stability and activity towards hexose conversion. Thus the heterogeneous catalysts were environment‐friendly for transforming biomass carbohydrates into fine chemicals.  相似文献   

15.
Methylene diphenyl dicarbamate (MDC) was synthesized from methyl phenyl carbamate (MPC) and trioxane using sulfuric acid (H2SO4) as catalyst. The effects of reaction temperature, reaction time, molar ratio of reactants and the content of catalyst have been studied in details. The results showed that H2SO4 exhibited high catalytic activity with the merits of moderate reaction velocity. Under the conditions of n(MPC)/n(trioxane) = 3:1, reaction temperature of 95°C, reaction time of 3.5 h and 30% H2SO4, the conversion of MPC reached 99.0% with the selectivity of MDC 81.6%. Moreover, the H2SO4 catalyst was reused five times without obviously activity decrease. Based on the identification of byproducts, a possible reaction mechanism was proposed.  相似文献   

16.
Calcium carbide residue (CCR) was investigated in transesterification reaction of triglycerides to determine its viability as a solid catalyst for biodiesel synthesis. Literature survey showed that CCR has never been studied as a solid catalyst in the transesterification of triglyceride. The scope of the study includes the effects of CCR calcination temperature, calcination time, the alcohol/oil molar ratio, the catalyst amount (wt % of oil) and the reaction time. The relationship between chemical composition and catalytic activity of waste cement was also investigated. These CCR catalysts, thermally activated at 600 °C, can give rise to fatty acid methyl esters (FAME) purity higher than 99.5%, after 3 h of reaction, when oil/methanol molar ratio of 1/12 and 1 wt % of the catalyst were employed. Application of CCR as catalyst for biodiesel production in this study may not only provide a cost‐effective and environment friendly way of recycling CCR waste but also reduce hopefully the cost of biodiesel production.  相似文献   

17.
In this present investigation, Cassia auriculata was explored as a feedstock for production of biodiesel. Transesterification reaction was performed by both enzyme (lipase) and chemical (potassium hydroxide) catalyst with diverse acyl acceptors such as methanol, ethanol, propanol, n-propanol, butanol, n- butanol, and finally their biodiesel yield were also recorded. Process optimization was performed by both one factor at a time method and response surface method. The maximal biodiesel yield of 92% (weight/weight) was obtained at the following optimal conditions: Oil:Methanol molar ratio of 1:6 (moles/moles), the lipase concentration of 2% (weight/weight), at 35 ?°C and 120 ?min. The highest biodiesel yield from Cassia auriculata oil was occurred with excess methanol that aids the equilibrium shift in the forward direction. The kinetics of the transesterification reaction was investigated under optimal conditions and the activation energy was found to be 14.91 ?kJ/mol. Simultaneously Gas Chromatography – Mass Spectroscopy was also carried out for the biodiesel produced from Cassia auriculata and the same has been reported. The GC analysis declares the existence of fatty acid esters like hexadecanoic acid methyl ester, methyl stearate and the peak with retention time 12.8 ?min signifies the evidence of hexadecanoic acid methyl ester with 28% of yield content. This investigation also evaluated the biodiesel quality produced from lipase-transesterified Cassia auriculata oil based on fuel properties. Biodiesel properties Flash Point (FC), Pour Point (PP) and kinematic viscosity were compared with American (ASTM 6751) and European (EN 14214) Standards. Cassia auriculata oil had PP 6.7 ?°C and Kinematic viscosity (813 ?kg/m3) that agreed with both the standards. Thus this study showed that Cassia auriculata oil could be a better fuel alternative with further improvement of fuel properties.  相似文献   

18.
The main objective of this study is to develop efficient and environmentally benign heterogeneous catalysts for biodiesel production. For this purpose, a heterogeneous MnO2@Mn(btc) catalyst was prepared by the solvothermal method, and the prepared catalyst was tested for the esterification of oleic acid. Various techniques such as X‐ray diffraction, scanning and transmission electron microscopy, Brunauer–Emmett–Teller (BET) method, infrared spectroscopy, thermogravimetry, and NH3‐TPD (temperature programmed desorption) analysis were employed for the characterization of the solid catalyst. The solid catalyst with MnO2@Mn(btc) loading of 15% showed high catalytic activity and long durability in the esterification of oleic acid, in which the fatty acid methyl ester yield reached 98% consecutively for at least five cycles under mild conditions.  相似文献   

19.
Biodiesel production from waste cooking oils over SO42-/Zr-SBA-15 catalyst was successfully carried out and investigated. SO42-/Zr-SBA-15 catalyst was prepared by one-step process using anhydrous zirconium nitrate as zirconium resource, and endowed with the strong Lewis acid sites formed by supporting the zirconium species onto the SBA-15 surface. The asprepared SO42-/Zr-SBA-15 showed excellent triglyceride conversion efficiency of 92.3% and fatty acid methyl esters (FAME) yield of 91.7% for the transesteriffication of waste cooking oil with methanol under the optimized reaction conditions: the methanol/oil molar ratio of 30, the reaction temperature of 160 oC, the reaction time of 12 h and 10wt% of catalyst. It was noticed that the as-prepared SO42-/Zr-SBA-15 materials with the higher area surface of mesoporous framework and the surface acidity displayed excellent stability and reusability, maintaining high FAME yield of (74±1)% after seven runs of reaction.  相似文献   

20.
以蜂窝状陶瓷为载体,采用溶胶凝胶法和浸渍法制备了不同Fe/Ag负载量的Fe-Ag/Al_2O_3催化剂。以C_3H_6为还原剂,在模拟烟气条件下和200-700℃范围内,程序控温的陶瓷管流动反应器上进行了催化还原NO的性能评估。结果表明,7.2Fe/1.9Ag/20Al_2O_3/CM在500和550℃时催化C_3H_6还原NO的脱硝效率分别超过90%和达到100%。铁离子能有效地提高Ag/20Al_2O_3/CM催化剂抵抗烟气中的SO_2和H_2O的能力。结果表明,当烟气中含有体积分数为0.02%的SO2和8%的H_2O时,在500℃时7.2Fe/1.9Ag/20Al_2O_3/CM催化C_3H_6还原NO的脱硝效率不受影响,在6 h的连续实验中保持90%的脱硝效率而没有下降。而未经铁离子修饰的2Ag/20Al_2O_3/CM的催化活性则受烟气中的SO2和H_2O影响很大,0.02%的SO2和8%的H_2O分别使2Ag/20Al_2O_3/CM在500℃时催化C_3H_6还原NO的脱硝效率迅速从70%分别下降至46%和25%。XRD和SEM表征结果表明,经铁离子修饰后的7.2Fe/1.9Ag/20Al_2O_3/CM催化剂中,形成了AgFeO_2以及Fe~(3+),催化剂表面变得疏松多孔,形成以Fe_3O_4为主的针状和片状晶体。H_2-TPR结果表明,7.2Fe/1.9Ag/20Al_2O_3/CM比Ag/20Al_2O_3/CM在更宽的温度范围内具有更好的还原特性。吡啶吸附红外光谱(Py-FTIR)实验结果显示,Fe增加了催化剂表面的Lewis酸性位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号