首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca2+ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.  相似文献   

4.
Although the apoptosis of chondrocytes plays an important role in endochondral ossification, its mechanism has not been elucidated. In this study, we show that guanosine induces chondrocyte apoptosis based on the results of acridine orange/ethidium bromide staining, caspase-3 activation, and sub-G1 fraction analysis. The potent inhibitory effect of dipyridamole, a nucleoside transporter blocker, indicates that extracellular guanosine must enter the chondrocytes to induce apoptosis. We found that guanosine promotes Fas-Fas ligand interaction which, in turn, leads to chondrocyte apoptosis. These findings indicate a novel mechanism for endochondral ossification via metabolic regulation.  相似文献   

5.
Betaig-h3 (betaig-h3) is a secretory protein composed of fasciclin I-like repeats containing sequences that allows binding of integrins and glycosaminoglycans in vivo. Expression of betaig-h3 is responsive to TGF-Beta and the protein is found to be associated with extracellular matrix (ECM) molecules, implicating betaig-h3 as an ECM adhesive protein of developmental processes. We previously observed predominant expression of betaig-h3 expression in the basement membrane of proximal tubules of kidney. In this study, the physiological relevance of such localized expression of betaig-h3 was examined in the renal proximal tubular epithelial cells (RPTEC). RPTEC constitutively expressed betaig-h3 and the expression was dramatically induced by exogenous TGF-Beta1 treatment. betaig-h3 and its second and fourth FAS1 domain were able to mediate RPTEC adhesion, spreading and migration. Two known alpha3beta1 integrin-interaction motifs including aspartatic acid and isoleucine residues, NKDIL and EPDIM in betaig-h3 were responsible to mediate RPTEC adhesion, spreading, and migration. By using specific antibodies against integrins, we confirmed that alpha3beta1 integrin mediates the adhesion and migration of RPTECs on betaig-h3. In addition, it also enhanced proliferation of RPTECs through NKDIL and EPDIM. These results indicate that betaig-h3 mediates adhesion, spreading, migration and proliferation of RPTECs through the interaction with alpha3beta1 integrin and is intimately involved in the maintenance and the regeneration of renal proximal tubular epithelium.  相似文献   

6.
7.
Adhesion and migration of vascular smooth muscle cells (VSMCs) play an important role in the pathogenesis of atherosclerosis. These processes involve the interaction of VSMCs with extracellular matrix proteins. Here, we investigated integrin isoforms and signaling pathways mediating the adhesion and migration of VSMCs on betaig-h3, a transforming growth factor (TGF)-beta-inducible extracellular matrix protein that is elevated in atherosclerotic plaques. Adhesion assays showed that the alphavbeta5 integrin is a functional receptor for the adhesion of aortic VSMCs to betaig-h3. An YH18 motif containing amino acids between 563 and 580 of betaig-h3 was an essential motif for the adhesion and growth of VSMCs. Interaction between the YH18 motif and the alphavbeta5 integrin was responsible for the migration of VSMCs on betaig-h3. Inhibitors of phosphatidylinositide 3-kinase, extracellular signal-regulated kinase (ERK), and Src kinase reduced the adhesion and migration of VSMCs on betaig-h3. betaig-h3 triggered phosphorylation and activation of AKT, ERK, focal adhesion kinase, and paxillin mediating the adhesion and migration of VSMCs. Taken together, these results suggest that betaig-h3 and alphavbeta5 integrin play a role in the adhesion and migration of VSMCs during the pathogenesis of atherosclerosis.  相似文献   

8.
Chondrocytes are the only cell type present in mature articular cartilage (2-5% of total tissue). The biological activities of the chondrocyte population are regulated by genetic, biologic and biochemical factors, as well as environmental factors (stress, flow and electric field). Although compressive forces within joint articular cartilage are required for maintenance of the normal composition of articular cartilage, there is a lack of knowledge about the number of pressure-related proteins expressed in articular cartilage. Two-dimensional gel electrophoresis (2-DE) and high-performance liquid chromatography-electrospray/tandem mass spectrometry (HPLC/ESI-MS/MS) were used to identify the levels of pressure-related proteins expressed by chondrocytes grown in the presence or absence of hydrostatic pressure. A total of 266 spots were excised from the gels and analyzed by HPLC/ESI-MS/MS. Functional classification of up-regulated proteins indicated that energy and protein fate were the main biological processes occurring in pressurized chondrocytes. Furthermore, membrane-bound transferrin-like protein p97, a marker of chondrocyte differentiation, was only expressed in chondrocytes under hydrostatic pressure. These data suggest that hydrostatic pressure can induce cell differentiation by increasing the expression level of energy metabolism- and protein fate-related proteins, indicating that hydrostatic pressure may be needed for normal biosynthesis and differentiation of articular chondrocytes.  相似文献   

9.
10.
11.
采用紫外固化法制备了基于丙烯酸酯类水凝胶的聚合物涂层(PC),并用X射线光电子能谱(XPS)、水接触角(WCA)和原子力显微镜(AFM)分别对PC进行了化学组成和表面性能的表征.在PC表面进行了人类脂肪干细胞(h ASC)的体外长期培养扩增,得到的第3代细胞的生物学表征结果表明,干细胞在PC表面能正常黏附生长,流式细胞仪检测发现干细胞对特征标记物CD49d,CD73,CD105的阳性显性比例较高,对HLA-DR和CD31几乎不显性,说明扩增的干细胞具有h ASC特征.对PC上扩增的干细胞进行诱导分化,并用油红O、茜素红和阿利新蓝分别进行染色分析,结果表明,该干细胞保留了h ASC的多能特性:能分化为成脂、成骨和成软骨细胞.含有单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)、甲基丙烯酸环己酯(CHMA)和甲基丙烯酸-2-(二乙氨基)乙酯(DEAEMA)的PC2(质量比为3∶1∶2)在用于h ASC体外长期培养时,比其它PC和TCP更有利于细胞的黏附和增殖,纯化细胞,保持其多能性.实时荧光定量PCR(RT-q PCR)的分析表明PC2上得到的细胞更容易向成骨和成软骨细胞分化.  相似文献   

12.
Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.  相似文献   

13.
Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells.  相似文献   

14.
TGF-beta1-induced glomerular mesangial cell (GMC) injury is a prominent characteristic of renal pathology in several kidney diseases, and a ternary protein complex consisting of PINCH-1, integrin-linked kinase (ILK) and alpha-parvin plays a pivotal role in the regulation of cell behavior such as cell proliferation and hypertrophy. We report here that PINCH-1-ILK-alpha-parvin (PIP) complex regulates the TGF-beta1-induced cell proliferation and hypertrophy in cultured rat GMCs. When GMCs were treated with TGF-beta1 for 1, 2 and 3 days, the PIP complex formation was up-regulated after 1 day, but it was down-regulated on day 2. Cell numbers were significantly elevated on day 2, but dramatically decreased on day 3. In contrast, a significant increase in cellular protein contents was observed 3 days after TGF-beta1-treatment. TGF-beta1 induced early increase of caspase-3 activity. In GMCs incubated with TGF-beta1 for 2 days, cytosolic expression of p27(Kip1) was dramatically reduced, but its nuclear expression was remarkably elevated. A significantly decreased expression of phospho-Akt (Ser 473) was observed in the cells treated with TGF-beta1 for 1 day. TGF-beta1 induced early increase of phospho-p27(Kip1) (Thr 157) expression with subsequent decrease, and similar responses to TGF-beta1 were observed in the p38 phosphorylation (Thr 180/Thr 182). Taken together, TGF-beta1 differently regulates the PIP complex formation of GMCs in an incubation period-dependant fashion. The TGF-beta1-induced up- and down-regulation of the PIP complex formation likely contributes to the pleiotropic effects of TGF-beta1 on mesangial cell proliferation and hypertrophy through cellular localization of p27(Kip1) and alteration of Akt and p38 phosphorylation. TGF-beta1-induced alteration of the PIP complex formation may be importantly implicated in the development and progression of glomerular failure shown in several kidney diseases.  相似文献   

15.
The differentiation of stem cells into multi-lineages is essential to aid the development of tissue engineered materials that replicate the functionality of their tissue of origin. For this study, Raman spectroscopy was used to monitor the formation of a bone-like apatite mineral during the differentiation of human mesenchymal stem cells (hMSCs) towards an osteogenic lineage. Raman spectroscopy observed dramatic changes in the region dominated by the stretching of phosphate groups (950-970 cm(-1)) during the period of 7-28 days. Changes were also seen at 1030 cm(-1) and 1070 cm(-1), which are associated with the P-O symmetric stretch of PO(4)(3-) and the C-O vibration in the plane stretch of CO(3)(2-). Multivariate factor analysis revealed the presence of various mineral species throughout the 28 day culture period. Bone mineral formation was observed first at day 14 and was identified as a crystalline, non-substituted apatite. During the later stages of culture, different mineral species were observed, namely an amorphous apatite and a carbonate, substituted apatite, all of which are known to be Raman markers for a bone-like material. Band area ratios revealed that both the carbonate-to-phosphate and mineral-to-matrix ratios increased with age. When taken together, these findings suggest that the osteogenic differentiation of hMSCs at early stages resembles endochondral ossification. Due to the various mineral species observed, namely a disordered amorphous apatite, a B-type carbonate-substituted apatite and a crystalline non-substituted hydroxyapatite, it is suggested that the bone-like mineral observed here can be compared to native bone. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analyses for monitoring the various mineral species, degree of mineralisation and the crystallinity of hMSCs as they differentiate into osteoblasts.  相似文献   

16.
17.
The photochemistry of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)PH(3) and ax-Fe(CO)(4)PH(3) is studied with time-dependent DFT theory to explore the propensity of the excited molecules to expel their ligands. The influence of the PH(3) ligand on the properties of these complexes is compared with the photodissociation behavior of the binary carbonyl complexes Cr(CO)(6) and Fe(CO)(5). The lowest excited states of Cr(CO)(5)PH(3) are metal-to-ligand charge transfer (MLCT) states, of which the first three are repulsive for PH(3) but modestly bonding for the axial and equatorial CO ligands. The repulsive nature is due to mixing of the initial MLCT state with a ligand field (LF) state. A barrier is encountered along the dissociation coordinate if the avoided crossing between these states occurs beyond the equilibrium distance. This is the case for expulsion of CO but not for the PH(3) group as the avoided state crossing occurs within the equilibrium Cr-P distance. The lowest excited state of ax-Fe(CO)(4)PH(3) is a LF state that is repulsive for both PH(3) and the axial CO. Excited-state quantum dynamics calculations for this state show a branching ratio of 99 to 1 for expulsion of the axial phosphine ligand over an axial CO ligand. The nature of the phosphorus ligand in these Cr and Fe complexes is only of modest importance. Complexes containing the three-membered phosphirane or unsaturated phosphirene rings have dissociation curves for their lowest excited states that are similar to those having a PH(3) ligand. Analysis of their ground-state Cr-P bond properties in conjunction with frontier orbital arguments indicate these small heterocyclic groups to differ from the PH(3) group mainly by their enhanced sigma-donating ability. All calculations indicate that the excited Cr(CO)(5)L and Fe(CO)(4)L molecules (L = PH(3), PC(2)H(5), and PC(2)H(3)) prefer dissociation of their phosphorus substituent over that of an CO ligand. This suggests that the photochemical approach may be a viable complement to the ligand exchange and redox methods that are currently employed to demetalate transition metal complexed organophosphorus compounds.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号