首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrostatic and polarization energies for the three known polymorphic crystal structures of 1,4‐dichlorobenzene, as well as for one particularly stable virtual crystal structure generated by computer search, were calculated by a new accurate numerical integration method over static molecular charge densities obtained from high level ab initio molecular‐orbital calculations. Results are compared with those from standard empirical atom‐atom force fields. The new electrostatic energies, which include charge density overlap (penetration) effects, are seen to be much larger than and sometimes of opposite sign to those derived from point‐charge models. None of the four polymorphs is substantially more stable than the others on electrostatic‐energy grounds. Molecule‐molecule electrostatic energies have been calculated for the more important molecular pairs in each of the four structures; trends are found to be very different from those indicated by point‐charge energies or by total energies estimated with a parametric atom‐atom force field. Conclusions based exclusively on analysis of intermolecular atom contacts and point‐charge electrostatics may need to be modified in the light of the new kind of calculation.  相似文献   

2.
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry‐dependent multipole models. In this study, atomic force expressions for geometry‐dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives . The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen‐bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry‐dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry‐dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry‐dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry‐dependent multipole models. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
The title Schiff base compound, N,N′‐bis­(pyrrol‐2‐yl­methyl­ene)­propane‐1,2‐di­amine, C13H16N4, forms an interesting supramolecular structure (a one‐dimensional ladder‐like polymer) in the solid state that is based on the existence of complementary intermolecular N—H⋯N=C hydrogen bonds between the monomer units. The polymer axis is collinear with the c axis of the orthorhombic unit cell. Quantum‐chemical AM1 calculations clearly indicate that self‐recognition in this system by hydrogen bonding is favoured on electrostatic grounds, since the partial atomic charge on the H atom of the pyrrole NH group (0.274 e) complements the partial atomic charge of the N atom of the C=N group (−0.239 e) on a neighbouring mol­ecule.  相似文献   

4.
X‐ray/neutron (X/N) diffraction data measured at very low temperature (15 K) in conjunction with ab initio theoretical calculations were used to model the crystal charge density (CD) of the host–guest complex of hydroquinone (HQ) and acetonitrile. Due to pseudosymmetry, information about the ordering of the acetonitrile molecules within the HQ cavities is present only in almost extinct, very weak diffraction data, which cannot be measured with sufficient accuracy even by using the brightest X‐ray and neutron sources available, and the CD model of the guest molecule was ultimately based on theoretical calculations. On the other hand, the CD of the HQ host structure is well determined by the experimental data. The neutron diffraction data provide hydrogen anisotropic thermal parameters and positions, which are important to obtain a reliable CD for this light‐atom‐only crystal. Atomic displacement parameters obtained independently from the X‐ray and neutron diffraction data show excellent agreement with a |ΔU| value of 0.00058 Å2 indicating outstanding data quality. The CD and especially the derived electrostatic properties clearly reveal increased polarization of the HQ molecules in the host–guest complex compared with the HQ molecules in the empty HQ apohost crystal structure. It was found that the origin of the increased polarization is inclusion of the acetonitrile molecule, whereas the change in geometry of the HQ host structure following inclusion of the guest has very little effect on the electrostatic potential. The fact that guest inclusion has a profound effect on the electrostatic potential suggests that nonpolarizable force fields may be unsuitable for molecular dynamics simulations of host–guest interaction (e.g., in protein–drug complexes), at least for polar molecules.  相似文献   

5.
分析了一种新设计的含硫半抗原N-苯甲酰牛磺酰基苯丙氨酸的晶体结构,确证了其中的S原子为四面体构型,可以用来模拟酰胺键水解的过渡态,并且发现了几个分子间氢键.运用分子力学程序MOLGEN对此化合物进行了优化,并与含P半抗原进行了比较.然后又比较了N_S_C键和N_P_C键的旋转构象分析图,发现N_S_C键只有一个低能构象.最后用MOPAC程序(AM1参数)计算了S原子周围的电荷分布.发现S原子周围的电荷分布与P原子周围的电荷分布相似.  相似文献   

6.
The electronic charge redistribution and the infrared intensities of the two types of intramolecular hydrogen bonds, O-H···O and O-H···π, of o-hydroxy- and o-ethynylphenol, respectively, together with a set of related intermolecular hydrogen bond complexes are described in terms of atomic charges and charge fluxes derived from atomic polar tensors calculated at the B3LYP/cc-pVTZ level of theory. The polarizable continuum model shows that both the atomic charges and charge fluxes are strongly dependent on solvent. It is shown that their values for the OH bond in an intramolecular hydrogen bond are not much different from those for the "free" OH bond, but the changes are toward the values found for an intermolecular hydrogen bond. The intermolecular hydrogen bond is characterized not only by the decreased atomic charge but also by the enlarged charge flux term of the same sign producing thus an enormous increase in IR intensity. The overall behavior of the charges and fluxes of the hydrogen atom in OH and ≡CH bonds agree well with the observed spectroscopic characteristics of inter- and intramolecular hydrogen bonding. The main reason for the differences between the two types of the hydrogen bond lies in the molecular structure because favorable linear proton donor-acceptor arrangement is not possible to achieve within a small molecule. The calculated intensities (in vacuo and in polarizable continuum) are only in qualitative agreement with the measured data.  相似文献   

7.
Quantum chemical ab initio MODPOT /VRDDO calculations have been carried out on the following aminonitrobenzenes for which crystal structures had been determined experimentally: 4-nitroaniline; N,N-dimethyl-p-nitroaniline; 2,4,6-trinitroaniline; 1,3-diamino-2,4,6-trinitrobenzene (DATB—Form I); 1,3,5-triamino-2,4,6-trinitrobenzene (TATB); 2,3,4,6-tetranitroaniline; N-methyl-N,2,4,6-tetranitroaniline (Tetryl); and N-(β,β,β-trifluoroethyl)-N,2,4,6-tetranitroaniline. These quantum chemical calculations were performed on the molecules in their conformations as found in their crystal structures. The calculations were carried out with our own ab initio programs which also incorporate as options several desirable features for calculations on large molecules: ab initio effective core model potentials (MODPOT) which enable calculations of valence electrons only explicitly, yet accurately, and a charge conserving integral prescreening evaluation (which we named VRDDO-variable retention of diatomic differential overlap) especially effective for spatially extended molecules. Aminonitrobenzenes are especially interesting since there are inherent intramolecular ring distortions and deviations from planarity and intramolecular hydrogen bonds as well as intermolecular hydrogen bonds causing further deviations from planarity. The theoretical indices resulting from the quantum chemical calculations are relevant to a number of properties and behavioral characteristics of these molecules, both intramolecular and intermolecular. The charges on the atoms [from the gross atomic populations (GAP 's)] are needed for calculation of the atomic multipole–atomic multipole electrostatic contributions (a dominant factor) to the intermolecular interaction energies. These electrostatic interaction energies are part of the input necessary for calculations on the crystal packing and densities of these molecules. These GAP 's are also of value in interpreting the experimental photoelectron and ESCA spectra of these molecules. The total overlap populations (TOP 's) between atoms are related to the inherent bond strengths and can serve as a quantitative replacement for the old empirical bond length-bond order-bond energy relationship still used by explosives chemists to identify the “target bonds” (the weakest bonds). The TOP 's are of considerable value in predicting and tracing initiation and subsequent steps of explosive phenomena. The molecular orbital energies of the lowest unoccupied orbitals are of interest since nitroexplosives have been implicated in testicular toxicity and the initial metabolic activation appears to proceed through a one-electron reduction of the nitroexplosive.  相似文献   

8.
A method is presented for calculating the total electrostatic interaction energies between molecules from ab initio monomer wave functions. This approach differs from existing methods, such as Stone's distributed multipole analysis (DMA), in including the short-range penetration energy as well as the long-range multipolar energy. The monomer charge densities are expressed as distributed series of atom-centered functions which we call Gaussian multipoles; these are analogous to the distributed point multipoles used in DMA. Our procedure has been encoded in the GMUL program. Calculations have been performed on the formamide/formaldehyde complex, a model system for N? H …? O hydrogen bonding in biological molecules, and also on guanidinium/benzene, modeling amino/aromatic interactions in proteins. We find that the penetration energy can be significant, especially in its contribution to the variation of the electrostatic energy with interaction geometry. A hybrid method, which uses Gaussian multipoles for short-range atom pair interactions and point multipoles for long-range ones, allows the electrostatic energies, including penetration, to be calculated at a much reduced cost. We also note that the penetration energy may provide the best route to an atom–atom anisotropic model for the exchange-repulsion energy in intermolecular potentials. © 1994 by John Wiley & Sons, Inc.  相似文献   

9.
In an earlier article8 the need was demonstrated for atomic physicochemical properties for three dimensional structure directed quantitative structure-activity relationships, and it was shown how atomic parameters can be developed for successfully evaluating the molecular octanol-water partition coefficient, which is a measure of hydrophobicity. In this work we report more refined atomic values of octanol-water partition coefficients derived from nearly twice the number of compounds. Carbon, hydrogen, oxygen, nitrogen, sulfur and halogens are divided into 110 atom types of which 94 atomic values are evaluated from 830 molecules by least squares. These values gave a standard deviation of 0.470 and a correlation coefficient of 0.931. These parameters predicted the octanol-water partition coefficient of 125 compounds with a standard deviation of 0.520 and a correlation coefficient of 0.870. There is only a correlation coefficient of 0.432 between the atomic octanol-water partition coefficients and the atomic contributions to molar refractivity over the 93 atom types used for both the properties. This suggests that both parameters can be used simultaneously to model intermolecular interactions. We evaluated the CNDO/2 gross atomic charge distribution over several molecules to check the validity of our classification. We found that the charge density on the heteroatoms in conjugated systems is strongly affected by the presence of similar atoms in the conjugation which suggests it should be incorporated as a separate parameter in evaluating the partition coefficient.  相似文献   

10.
The predicted stability differences of the conformational polymorphs of oxalyl dihydrazide and ortho-acetamidobenzamide are unrealistically large when the modeling of intermolecular energies is solely based on the isolated-molecule charge density, neglecting charge density polarization. Ab initio calculated crystal electron densities showed qualitative differences depending on the spatial arrangement of molecules in the lattice with the greatest variations observed for polymorphs that differ in the extent of inter- and intramolecular hydrogen bonding. We show that accounting for induction dramatically alters the calculated stability order of the polymorphs and reduces their predicted stability differences to be in better agreement with experiment. Given the challenges in modeling conformational polymorphs with marked differences in hydrogen bonding geometries, we performed an extensive periodic density functional study with a range of exchange-correlation functionals using both atomic and plane wave basis sets. Although such electronic structure methods model the electrostatic and polarization contributions well, the underestimation of dispersion interactions by current exchange-correlation functionals limits their applicability. The use of an empirical dispersion-corrected density functional method consistently reduces the structural deviations between the experimental and energy minimized crystal structures and achieves plausible stability differences. Thus, we have established which types of models may give worthwhile relative energies for crystal structures and other condensed phases of flexible molecules with intra- and intermolecular hydrogen bonding capabilities, advancing the possibility of simulation studies on polymorphic pharmaceuticals.  相似文献   

11.
The total experimental electron density rho(r), its Laplacian inverted delta(2)rho(r), the molecular dipole moment, the electrostatic potential phi(r), and the intermolecular interaction energies have been obtained from an extensive set of single-crystal X-ray diffracted intensities, collected at T = 70(1) K, for the fungal metabolite austdiol (1). The experimental results have been compared with theoretical densities from DFT calculations on the isolated molecule and with fully periodic calculations. The crystal structure of (1) consists of zigzag ribbons extended along one cell axis and formed by molecules connected by both OH...O and CH...O interactions, while in a perpendicular direction, adjacent molecules are linked by short CH...O intermolecular contacts. An extensive, quantitative study of all the intra- and intermolecular H...O interactions, based not only on geometrical criteria, but also on the topological analysis of rho(r), as well as on the evaluation of the pertinent energetics, allowed us (i) to assess the mutual role of OH...O and CH...O interactions in determining molecular conformation and crystal packing; (ii) to identify those CH...O contacts which are true hydrogen bonds (HBs); (iii) to determine the relative hydrogen bond strengths. An experimental, quantitative evidence is given that CH...O HBs are very similar to the conventional OH...O HBs, albeit generally weaker. The comparison between experimental and theoretical electric dipole moments indicates that a noticeable charge rearrangement occurs upon crystallization and shows the effects of the mutual cooperation of HBs in the crystal. The total intermolecular interaction energies and the electrostatic energy contribution obtained through different theoretical methods are reported and compared with the experimental results. It is found that the new approach proposed by Spackman, based on the use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies, predicts the correct relative electrostatic interaction energies in most of the cases.  相似文献   

12.
Stabilization energies of crystals of polar molecules were calculated with the recently developed NDDO‐SCMP method that determines the wave function of a subunit embedded in the symmetrical environment constituted by the copies of the subunit. The total stabilization energies were decomposed into four components. The deformation energy is the difference between the energy of the molecule in the geometries adopted in the crystal on the one hand, and in vacuo, on the other hand. Further energy components are derived from the molecular geometry found in the crystal phase. The electrostatic component is the interaction energy of the molecule with the crystal field, corresponding to the charge distribution obtained in vacuo. The polarization component is the energy lowering resulted in the self‐consistent optimization of the wave function in the crystal field. The rest of the stabilization energy is attributed to the dispersion–repulsion component, and is calculated from an empirical potential function. The major novelty of this decomposition scheme is the introduction of the deformation energy. It requires the optimization of the structural parameters, including the molecular geometry, the intermolecular coordinates, and the cell parameters of the crystal. The optimization is performed using the recently implemented forces in the SCMP‐NDDO method, and this new feature is discussed in detail. The calculation of the deformation energy is particularly important to obtain stabilization energies for crystals in which the molecular geometry differs considerably from that corresponding to the energy minimum of the isolated molecule. As an example, crystals of diastereoisomeric salts are investigated. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1679–1690, 2001  相似文献   

13.
In the title compound, C21H18N2OS2, a strong intramolecular N—H...O hydrogen bond [N...O = 2.642 (3) Å] between the amide N atom and the benzoyl O atom forms an almost planar six‐membered ring in the central part of the molecule. In the crystal, molecules are packed through weak N—H...S interactions. Intra‐ and intermolecular hydrogen bonds and van der Waals interactions are the stabilizing forces for the crystal structure.  相似文献   

14.
Single crystals of (2S,5R)‐2‐isopropyl‐5‐methyl‐7‐(5‐methylisoxazol‐3‐yl)cyclohexanespiro‐3′‐(1,2,4,5,7‐tetraoxazocane), C16H26N2O5, have been studied via X‐ray diffraction. The tetraoxazocane ring adopts a boat–chair conformation in the crystalline state, which is due to intramolecular interactions. Conformational analysis of the tetraoxazocane fragment performed at the B3LYP/6‐31G(d,2p) level of theory showed that there are three minima on the potential energy surface, one of which corresponds to the conformation realized in the solid state, but not to a global minimum. Analysis of the geometry and the topological parameters of the electron density at the (3,?1) bond critical points (BCPs), and the charge transfer in the tetraoxazocane ring indicated that there are stereoelectronic effects in the O—C—O and N—C—O fragments. There is a two‐cross hyperconjugation in the N—C—O fragment between the lone electron pair of the N atom (lpN) and the antibonding orbital of a C—O bond (σ*C—O) and vice versa between lpO and σ*C—N. The oxazole substituent has a considerable effect on the geometry and the topological parameters of the electron density at the (3,?1) BCPs of the tetraoxazocane ring. The crystal structure is stabilized via intermolecular C—H…N and C—H…O hydrogen bonds, which is unambiguously confirmed with PIXEL calculations, a quantum theory of atoms in molecules (QTAIM) topological analysis of the electron density at the (3,?1) BCPs and a Hirshfeld analysis of the electrostatic potential. The molecules form zigzag chains in the crystal due to intermolecular C—H…N interactions being electrostatic in origin. The molecules are further stacked due to C—H…O hydrogen bonds. The dispersion component in the total stabilization energy of the crystal lattice is 68.09%.  相似文献   

15.
The long range intermolecular forces in terms of the interaction energies between two conjugated molecules are computed and discussed for the cases: (a) a point charge and ethylene, (b) two ethylene molecules, (c) two hexatriene molecules, (d) two benzene molecules, (e) two naphthalene molecules, and (f) two polar merocyanine molecules. The calculations are based on Buckingham's theory of long range intermolecular forces and the author's values for multipole moments and polarizabilities presented previously. The advantage of the treatment is: asymmetric molecules are correctly described and the intermolecular potential is better approximated than by the usual dipole approximation.  相似文献   

16.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

17.
The crystal structure of the β-polymorph of hydroquinone (β-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/?(2) (0.27 V/?) 1 ? along the 3-fold axis and 0.0105 e/?(2) (0.15 V/?) 1 ? along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.  相似文献   

18.
Equilibrium geometries, interaction energies, atomic charge, and charge transfer for the intermolecular interactions between furan and dihalogen molecules XY(X; Y=F,Cl,Br) were studied at the MP2aug-cc-pVDZ level. Three types of geometry are observed in these interactions: the pi-type geometry (I), in which the XY lies above the furan ring and almost perpendicularly to the C4-C5 bond of furan; the sigma-type geometry (II), where the X atom is pointed toward the nonbonding electron pair (n pair) of oxygen atom in furan; and the chi-type geometry (III), describing a blueshift hydrogen bond formed between the hydrogen atom of furan and dihalogen molecules XY. The calculated interaction energies show that the pi-type structures are more stable than the corresponding sigma-type and chi-type structures. To study the nature of the intermolecular interactions, an energy decomposition analysis was carried out and the results indicate that both the pi-type and sigma-type interactions are dominantly inductive energy in nature, while dispersion energy governs the chi-type interactions.  相似文献   

19.
The biologically transformed product of estradiol valerate, namely 3,7α‐dihydroxyestra‐1,3,5(10)‐trien‐17‐one monohydrate, C18H22O3·H2O, has been investigated using UV–Vis, IR, 1H and 13C NMR spectroscopic techniques, as well as by mass spectrometric analysis. Its crystal structure was determined using single‐crystal X‐ray diffraction based on data collected at 100 K. The structure was refined using the independent atom model (IAM) and the transferred electron‐density parameters from the ELMAM2 database. The structure is stabilized by a network of hydrogen bonds and van der Waals interactions. The topology of the hydrogen bonds has been analyzed by the Bader theory of `Atoms in Molecules' framework. The molecular electrostatic potential for the transferred multipolar atom model reveals an asymmetric character of the charge distribution across the molecule due to a substantial charge delocalization within the molecule. The molecular dipole moment was also calculated, which shows that the molecule has a strongly polar character.  相似文献   

20.
A general methodology for deriving geometry-dependent atomic charges is presented. The main ingredient of the method is a model that describes the molecular dipole moment in terms of geometry-dependent point charges. The parameters of the model are determined from ab initio calculations of molecular dipole moments and their Cartesian derivatives at various molecular geometries. Transferability of the parameters is built into the model by fitting ab initio calculations for various molecules simultaneously. The results show that charge flux along the bonds is a major contributing factor to the geometry dependence of the atomic charges, with additional contributions from fluxes along valence angles and adjacent bonds. Torsion flux is found to be smaller in magnitude than the bond and valence angle fluxes but is not always unimportant. A set of electrostatic parameters is presented for alkanes, aldehydes, ketones, and amides. Transferability of these parameters for a host of molecules is established to within 3 ?5% error in the predicted dipole moments. A possible extension of the method to include atomic dipoles is outlined. With the inclusion of such atomic dipoles and with the set of transferable point charges and charge flux parameters, it is demonstrated that molecular electrostatic potentials as well as electrostatic forces on nuclei can be reproduced much better than is possible with other models (such as potential derived charges). © 1995 by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号