首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

2.
Four coordination polymers, [Zn(o-bdc)(bth)0.5(H2O)] n (1), [Cd(o-bdc)(bth)0.5(H2O)] n (2), [Zn(m-bdc)(bth)] n (3), and [Cd(p-bdc)(bth)?·?(H2O)2] n (4) (where o-bdc?=?1,2-benzenedicarboxylate, m-bdc?=?1,3-benzenedicarboxylate, p-bdc?=?1,4-benzenedicarboxylate, and bth?=?1,6-bis(triazol)hexane), have been hydrothermally synthesized and structurally characterized. Both 1 and 2 are isostructural, featuring two binodal architectures: (63)(65·8) topology in terms of o-bdc and ZnII/CdII as three- and four-connected nodes. Complex 3 shows a 2-D (4,4) network with the Zn?···?Zn?···?Zn angle of 57.84°, whereas 4 exhibits planar 2-D (4,4) network. These 2-D networks of 3 and 4 are extended by supramolecular interactions, such as CH?···?π/π–π stacking and hydrogen-bonding into 3-D architecture. A structural comparison of these complexes demonstrates that the dicarboxylate building blocks with different dispositions of the carboxyl site play a key role in governing the coordination motifs as well as 3-D supramolecular lattices. Solid-state properties such as photoluminescence and thermal stabilities of 14 have also been studied.  相似文献   

3.
Three coordination polymers {[Mn(bte)(NO2-1,3-bdc)(H2O)]·H2O}n (1), {[Mn(btp)(NO2-1,3-bdc)(H2O)]·2H2O}n (2), and {[Mn(btb)(NO2-1,3-bdc)(H2O)]·H2O}n (3) (bte, 1,2-bis(1,2,4-triazol-1-yl)ethane; btp, 1,3-bis(1,2,4-triazol-1-yl)propane; btb, 1,4-bis(1,2,4-triazol-1-yl)butane, NO2-1,3- H2bdc, 5-nitroisophthalic acid) were synthesized by combination of bte, btp, and btb, conformationally flexible ligands with different spacer lengths, and the rigid [NO2-1,3-bdc]2?. In 1, two [NO2-1,3-bdc]2? anions link adjacent [Mn2(bte)2] rings to give an independent, 1-D metal–organic nanotube (MONT). The structure of 2 is an undulating 2-D (4,4) network. In 3, the combination of a [Mn(btb)]n single helical chain and two [Mn(NO2-1,3-bdc)]n linear chains assemble an intriguing independent, 1-D MONT. An interesting structural feature of 1 and 3 is that the nitro groups of each 1-D MONT interpenetrate into two adjacent 1-D MONTs to form a 1-D → 2-D interdigitated array. 3-D architectures in 1 and 3 are assembled via hydrogen bond interactions. The luminescent properties and thermal stabilities of 1, 2, and 3 were investigated.  相似文献   

4.
In this study, two new Mn(II) complexes consisting of a phenanthroline derivative and organic acid ligands, [Mn(3-PIP)(1,3-bdc)] n (1) and [Mn(3-PIP)2(1,4-bdc)] n (2) (3-PIP?=?2-(3-pyridyl)-imidazo[4,5-f]?1,10-phenanthroline, 1,3-H2bdc?=?benzene-1,3-dicarboxylic acid, 1,4-H2bdc?=?benzene-1,4-dicarboxylic acid), have been synthesized via hydrothermal reaction and characterized by Fourier transform infrared (FT-IR) spectra, elemental analyses, and single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1-D) twisted double chain bridged by 1,3-bdc. The 3-PIP ligands in a parallel fashion are alternately attached to both sides of the 1-D double chain. Complex 2 exhibits a 1-D zigzag chain, to which pairs of crossed 3-PIP ligands are alternately attached. The two complexes are further extended into three-dimensional (3-D) supramolecular structures by hydrogen-bonding and π–π stacking interactions. The N-donor ligands with an extended π-system play a crucial role in formation and stabilization of the final supramolecular frameworks. Thermal properties of 1 and 2 and fluorescence of 2 are investigated in the solid state.  相似文献   

5.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

6.
Two heterometallic 3d–4f coordination polymers, [Gd(CuL)2(Hbtca)(btca)(H2O)] · 2H2O ( 1 ) and [Er(CuL)2(Hbtca)(btca)(H2O)] · H2O · CH3OH ( 2 ) (CuL, H2L = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclo‐pentadeca‐7,13‐dien; H2btca = benzotriazole‐5‐carboxylic acid) were synthesized by solvothermal methods and characterized by single‐crystal X‐ray diffraction. Complexes 1 and 2 exhibit a double‐strand meso‐helical chain structures formed by [LnIIICuII2] (LnIII = Gd, Er) units by oxamide and benzotriazole‐5‐carboxylate bridges. They are isomorphic except that one free water molecule of 1 is replaced by a methanol molecule. All 1D chains are further interlinked by hydrogen bonds resulting in a 3D supramolecular architecture. The magnetic properties of the compound 1 and 2 are also discussed.  相似文献   

7.
Two novel coordination polymers based on mixed ligands, [Zn(dpb)(bdc)(H2O)]n ( 1 ) and [Cd(dpb)(bbdc)(H2O)(DMF)]n ( 2 ) [dpb = 1, 4‐bis(pyridin‐3‐ylmethoxy)benzene, H2bdc = 1, 4‐benzenedicarboxylate, H2bbdc = 4, 4′‐dibenzenedicarboxylate], were synthesized under hydrothermal conditions. Compound 1 forms meso‐helical chain and shows three fold interpenetrating architecture with 4‐connected net {6 6} diamond topology. Compound 2 is a left‐ and right‐handed helical layer, which are interacted by π–π stacking interactions to construct a 3D framework. The luminescent properties of the compounds are discussed.  相似文献   

8.
In our efforts to tune the structures of Mn(II) complexes by selection of organic carboxylic acid ligands, six new complexes [Mn(PIP)2Cl2] (1), [Mn(PIP)2(4,4′-bpdc)(H2O)]·2H2O (2), [Mn(PIP)2(1,4-bdc)] (3), [Mn(PIP)(1,3-bdc)] (4), [Mn(PIP)2(2,6-napdc)]·H2O (5), and [Mn(PIP)(1,4-napdc)]·H2O (6) were obtained, where PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 4,4′-H2bpdc=biphenyl-4,4′-dicarboxylic acid, 1,4-H2bdc=benzene-1,4-dicarboxylic acid, 1,3-H2bdc=benzene-1,3-dicarboxylic acid, 2,6-H2napdc=2,6-naphthalenedicarboxylic acid, 1,4-H2napdc=1,4-naphthalenedicarboxylic acid. All complexes have been structurally characterized by IR, elemental analyses, and single crystal X-ray diffraction. Structural analyses show that complexes 1 and 2 possess mononuclear structures, complexes 3, 4, and 5 feature chain structures, and complex 6 exhibits a 2D (4,4) network. The structural difference of 16 indicates that organic carboxylate anions play important roles in the formation of such coordination architectures. Furthermore, the thermal properties of complexes 16 and the magnetic property of 4 have been investigated.  相似文献   

9.
Four new complexes, [Zn(btca)(2,2′‐bpy)] ( 1 ), [Mn(btca)(2,2′‐bpy)] ( 2 ), [Co(btca)(phen)] ( 3 ), and [Cu(btca)(phen)] ( 4 ), (H2btca=benzotriazole‐5‐carboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), were successfully synthesized and characterized by elemental analysis, single crystal X‐ray diffraction, and IR spectroscopy. Complexes 1 – 4 crystallize in the orthorhombic system with space group of Pbca and show similar 2D layers, which are interlinked to supramolecular networks by π‐π stacking interactions. Furthermore, TGA curves show that complexes 1 – 4 have good thermal stability. Solid‐state fluorescent property of complex 1 was also investigated at room temperature.  相似文献   

10.
《Journal of Coordination Chemistry》2012,65(16-18):3021-3033
Abstract

Three uranyl-containing coordination polymers, Cd(UO2)2(cpt)4(bdc)(H2O)2 (1), Zn(UO2)2(cpt)4(bdc)(H2O)2 (2) and UO2(OH)(cpt) (3) (Hcpt =4-(4’-carboxyphenyl)-1,2,4triazole, H2bdc =1,4-benzenedicarboxylic acid), have been synthesized under hydrothermal conditions by employing a bifunctional ligand (Hcpt) with both O-donors and N-donors. Compound 1 represents a 3-D framework with the point symbol of (62·84)(62·8)2 by the intersection of two sets of 1-D [Cd2(UO2)2(cpt)4(bdc)]n loop chains extended along different directions. Compound 2 exhibits a 2-nodal (3,4)-connected 2-D network with the point symbol (4·62)2(42·62·82). Compound 3 shows a 2-D network by the assembly of uranyl dimers and the cpt- anions. Although 1 and 2 have similar chemical formulas and the same coordination modes of ligands and metal centers, they possess totally different molecular frameworks, derived from the different radii of the secondary metal centers, Cd(II) and Zn(II). In addition, the optimal synthesis condition, thermal stability, luminescent properties, and IR spectra of 1 and 2 were also investigated.  相似文献   

11.
Four coordination polymers, [Ag(L1)](m-Hbdc) (1), [Ag(L1)]2(p-bdc)?·?8H2O (2), [Ag(Hbtc)(L1)][Ag(L1)]?·?2H2O (3) and [Ag2(L2)2](OH-bdc)2?·?4H2O (4), where L1?=?1,1′-(1,4-butanediyl)bis(imidazole), L2?=?1,2-bis(imidazol-1-ylmethyl)benzene, m-H2bdc?=?1,3-benzenedicarboxylic acid, p-H2bdc?=?1,4-benzenedicarboxylic acid, H3btc?=?1,3,5-benzenetricarboxylic acid, and OH–H2bdc?=?5-hydroxisophthalic acid, were synthesized under hydrothermal conditions. Compound 1 contains a–Ag-L1–Ag-L1–chain and a hydrogen-bonding interaction induced–(m-Hbdc)-(m-Hbdc)–chain. Compound 2 consists of two independent–Ag-L1–Ag-L1–chains. P-bdc anions are not coordinated. Hydrogen bonds form a 3D supramolecular structure. A novel (H2O)16 cluster is formed by lattice water molecules in 2. Compound 3 contains a–Ag-L1–Ag-L1–and a–Ag(Hbtc)-L1–Ag(Hbtc)-L1–chain. The packing diagram shows a 2D criss-cross supramolecular structure, with?π?···?π?and C–H ···?π?interactions stabilizing the framework. Compound 4 contains a [Ag2(L2)2]2+ dimer with hydrogen-bonding,?π?··· π, and Ag ··· O interactions forming a 3D supramolecular framework. The luminescent properties for these compounds in the solid state are discussed.  相似文献   

12.
A series of new metal-organic frameworks (MOFs) based on 9,10-bis(imidazol-1-ylmethyl)anthracene and four structurally related aromatic dicarboxylates, namely, [Cd(L)(o-bdc)]·1.25H2O (1), [Cd(L)(pydc)] (2), [Zn(L)(pydc)] (3), [Cd3(L)2(m-bdc)3] (4) and [Cd(L)(p-bdc)]·2H2O (5) (L = 9,10-bis(imidazol-1-ylmethyl)anthracene, o-H2bdc = 1,2-benzenedicarboxylic acid, H2pydc = 2,3-pyridinedicarboxylic acid, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid) have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses, and further characterized by infrared spectra (IR), elemental analyses and powder X-ray diffraction (PXRD). Compound 1 displays a two-dimensional (2D) layer structure, which is stabilized by intramolecular hydrogen-bonding interactions. Compounds 2 and 3 are isostructural and show 2D layer structures, which are further extended by intermolecular C-H···O hydrogen-bonding interactions to form 3D supramolecular frameworks. Compound 4 has a 2D layer structure with trinuclear units [Cd3(u3-O)2]6+. Compound 5 is a 3D three-fold interpenetrating framework with a Schläfli symbol (66·8). The structural differences of these compounds indicate that the anions play important roles in the resulting structures of the MOFs. The luminescent properties were also investigated for compounds 1-5.  相似文献   

13.
Three new zinc(II)/cobalt(II) coordination complexes [Zn(HBTB)(L)0.5] ( 1 ), [Zn(HCPPA)(L)] ( 2 ), and [Co(HCPPA)(L)] · 2H2O ( 3 ) [H3BTB = 1,3,5-tri(4-carboxylphenyl)benzene, H3CPPA = 5-(4-carboxyl-phenoxy)-isophthalic acid, L = N1,N4-bis(3-pyridyl)naphthaldiamide] were solvothermally synthesized. The structural characterization reveals that complex 1 represents a 3D coordination framework with a binodal 3,4-connected {4.102}2{4.105}2 topology constructed from the 2D [Zn(HBTB)]n polymeric double-layers and the bidentate L ligands. Complex 2 is a 1D metal-organic chain derived from the dinuclear [Zn2(HCPPA)2] loops and [Zn2(L)2] loops. Complex 3 possesses a binodal 3,5-connected {42.6}{43.6.84.102} topological 2D layered architecture based on the [Co2(HCPPA)2] ribbon chains and the bidentate L ligands. For 2 and 3 , their adjacent chains or layers are respectively stacked into 3D supramolecular architectures via the hydrogen bonds. Moreover, the fluorescent and fluorescent sensing activities towards small solvent molecules of coordination complexes 1 and 2 , the photocatalyitc properties of 1 – 3 towards organic dyes were studied.  相似文献   

14.
In this article, eight new silver coordination polymers constructed from two structurally related ligands, 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole) (bbmb) and 1,1′-(1,4-butanediyl)bis(2-ethylbenzimedazole) (bbeb), have been synthesized: [Ag(L1)(bbmb)]·C2H5OH·H2O (1), [Ag(L2)(bbmb)]·C2H5OH (2), [Ag(L3)(bbmb)] (3), [Ag2(L4)(bbmb)2]·C2H5OH (4), [Ag(L2)(bbeb)]·C2H5OH (5), [Ag(L5)(bbeb)]·CH3OH (6), [Ag2(L6)2(bbeb)]·H2O (7), and [Ag2(L7)(bbeb)2]·4(H2O) (8), where L1 = benzoate anion, L2 = p-methoxybenzoate anion, L3 = 2-amino-benzoate anion, L4 = oxalate anion, L5 = cinnamate ainon, L6 = 3-amino-benzoate anion, and L7 = fumaric anion. In 1-3, 5 and 6, the bidentate N-donor ligands (bbmb and bbeb) in trans conformations bridge neighboring silver centers to form 1D single chain structures. The carboxylate anions are attached on both sides of the chains. Moreover, 1 and 3 are extended into 2D layers, while 2 and 6 are extended into 3D frameworks through π-π interactions. In 4, the bbmb ligands bridge adjacent Ag(I) centers to form -Ag-bbmb-Ag- chains, which are further connected by L4 anions to form a 2D layer. The resulting layers are extended into 3D frameworks through strong π-π interactions. In 7, the N-donor ligands (bbeb) in trans conformations bridge two silver centers to generate a [Ag2(bbeb)]2+ unit. The adjacent [Ag2(bbeb)]2+ units are further connected via the L6 anions to form a 1D ladder chain. Moreover, the structure of compound 7 is extended into a 3D framework through hydrogen bonding and π-π interactions. In 8, two Ag(I) cations are bridged by two bbeb ligands in cis conformations to form a [Ag2(bbeb)2]2+ ring, which are further linked by L7 anions to generate a 1D string chain. Furthermore, the hydrogen bonding and π-π interactions link L7 anions to form a 2D supramolecular sheet. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

15.
Metal–organic frameworks with the compositions [Zn(bpy)(bdc)(H2O)]n1, [Zn(bpy)(btec)1/2(H2O)]n2, [Cd(bpy)(bdc)(H2O)]n3 and Cd(bpy)(btec)1/2(H2O)]n4 (H2bdc = 1,4-benzenedicarboxylic acid = terephthalic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid and bpy = 2,2′-bipyridine) have been synthesized and characterized using spectroscopic and single-crystal X-ray diffraction techniques. In these complexes, ZnII/CdII-2,2′-bipyridine units and carboxylate anions exists as nodes and spacers respectively. An infinite 1D zig-zag chain structure is observed for both complexes 1 and 3, whereas complexes 2 and 4 display a 3D supramolecular architecture. The complexes are found to be photoluminescent, porous and show significant thermal stability.  相似文献   

16.
Urothermal reaction of Zn(NO3)2 · 6H2O, Htrz and NH2H2pdc or H2pdc affords two new compounds, namely [Zn2(NH2bdc)(trz)2]n · 2n(e-urea) ( 1 ) and [Zn4(bdc)2(trz)4(H2O)(e-urea)]n · n(e-urea) ( 2 ) (Htrz = 1,2,4-triazole, NH2H2bdc = 2-aminoterephthalic acid, H2bdc = terephthalic acid, e-urea = 1,3-ethyleneurea). X-ray structural analyses revealed that both compounds 1 and 2 feature e-urea-templated 3D pillar-layer framework with 2D ZnII-triazole layer and 6-connected pcu topological network. These two compounds not only have high thermal stabilities but also show intense luminescence at room temperature.  相似文献   

17.
Self‐assembly of Zn (II) or Cd (II) nitrates, flexible bis (pyridyl)‐diamine, as well as arenesulfonic acids, leads to the formation of ten coordination polymers, namely, [Zn(L1)(H2O)3]·2(p‐TS)·2H2O ( 1 ), [Zn(L1)(H2O)2]·2(p‐TS)·2H2O ( 2 ), [Zn(L1)2(p‐TS)2] ( 3 ), [Zn(H2L1)(H2O)4]·2(1,5‐NDS)·2H2O ( 4 ), [Zn(H2L2)(H2O)4]·2(1,5‐NDS)·4MeOH ( 5 ), [Cd(L1)(p‐TS)(NO3)]·H2O ( 6 ), [Cd(L1)(1,5 ‐NDS)0.5(H2O)]·0.5(1,5‐NDS)·H2O ( 7 ), [Cd(L2)(H2O)2]·(p‐TS)·(NO3)·3H2O ( 8 ), [Cd(L2)(1,5‐NDS)] ( 9 ) and [Cd(L2)(1,5‐NDS)]·MeOH ( 10 ) (L1 = N,N′‐bis (pyridin‐4‐ylmethyl) ethane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethy l)ethane‐1,2‐diamine, p‐HTS = p‐toluenesulfonic acid, 1,5‐H2NDS = 1,5‐naphthalene disulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single‐crystal X‐ray diffraction. Complexes 1 , 4 , 5 and 6 present linear or zigzag chain structures accomplished by the interconnection of adjacent M (II) cations through L1 ligands or protonated H2L12+/H2L22+ cations, while complexes 2 , 3 and 8 show similar (4,4) layer motifs constructed from the connection of M (II) cations through L1 and L2. The same coordination modes of L1 and L2 in complexes 7 and 9 join adjacent Cd (II) cations to form double chain structures, which are further connected by bis‐monodentate 1,5‐NDS2? dianions into different (6,3) and (4,4) layer motifs. The L2 molecules in complex 10 join adjacent Cd (II) cations together with 1,5‐NDS2? dianions to form 3D network with hxl topology. Therefore, the diverse coordination modes of the bis (pyridyl) ligand with chelating spacer and the feature of different arenesulfonate anions can effectively influence the architectures of these complexes. Luminescent investigation reveals that the emission maximum of these complexes varies from 374 to 448 nm in the solid state at room temperature, in which complexes 4 , 5 , 7 , 9 and 10 show average luminescence lifetimes from 7.20 to 14.82 ns. Moreover, photocatalytic properties of complexes 7–10 towards Methylene blue under Xe lamp irradiation are also discussed.  相似文献   

18.
通过水热或溶剂热合成的方法制备了5个一维配合物{[Zn(btbb)_(0.5)(m-phda)]·0.5H_2O}_n(1),{[Cd_2(btbb)(adtda)_2(H_2O)]·H_2O}_n(2),[Mn_2(btbb)(tbi)_2]_n(3),{[Cd(btbb)_(0.5)(3-Nitro-o-bdc)(H_2O)]·H_2O}_n(4)和[Cd_2(btbb)(tbi)_2]_n(5)(btbb=1,4-双(2-(4-噻唑基)苯并咪唑-1-基甲基)苯,m-H_2phda=间苯二甲酸,H_2adtda=1,3-金刚烷二羧酸,H_2tbi=5-叔丁基间苯二甲酸,3-Nitro-o-H_2bdc=3-硝基-1,2-苯二甲酸)。配合物1是一个包含22元环的一维链。配合物2是一个包含8元环的一维链,并且氮配体在这个一维链中仅仅起到装饰作用。配合物3是一个一维双链结构。配合物4是一个包含14元环的一维链。配合物5是一个阶梯状的一维双链结构。  相似文献   

19.
Herein, four new cadmium metal–organic frameworks (Cd–MOFs), [Cd(bib)(bdc)] ( 1 ), [Cd(bbib)(bdc)(H2O)] ( 2 ), [Cd(bibp)(bdc)] ( 3 ), and [Cd2(bbibp)2(bdc)2(H2O)] ( 4 ), have been constructed from the reaction of Cd(NO3)2 ? 4 H2O with 1,4‐benzenedicarboxylate (H2bdc) and structure‐related bis(imidazole) ligands (1,4‐bis(imidazol‐1‐yl)benzene (bib), 1,4‐bis(benzoimidazol‐1‐yl)benzene (bbib), 4,4′‐bis(imidazol‐1‐yl)biphenyl (bibp), and 4,4′‐bis(benzoimidazol‐1‐yl)biphenyl (bbibp)) under solvothermal conditions. Cd–MOF 1 shows a 2D (4,4) lattice with parallel interpenetration, whereas 2 displays an interesting 3D interpenetrating dia network, 3 exhibits an unusual 3D interpenetrating dmp network, and 4 presents a 3D self‐catenated pillar‐layered framework with a Schäfli symbol of [43 ? 63]2 ? [46 ? 616 ? 86]. The structural diversity indicates that the backbone of the bis(imidazole) ligand (including the terminal group and spacer) plays a crucial role in the assembly of mixed‐ligand frameworks. By using the pore‐forming effect of cadmium vapor, for the first time we have utilized these Cd–MOFs as precursors to further prepare porous carbon materials (PCs) in a calcination–thermolysis procedure. These PCs show different porous features that correspond to the topological structures of Cd–MOFs. Significantly, it was found that the specific surface area and capacitance of PCs are tuned by the Cd/C ratio of the MOF. Furthermore, the as‐synthesized PCs were processed with KOH to obtain activated porous carbon materials (APCs) with higher specific surface area and porosity, which greatly promoted the energy‐storage capacity. After full characterization, we found that APC‐bib displays the largest specific surface area (1290 m2 g?1) and total pore volume (1.37 cm3 g?1) of this series of carbon materials. Consequently, APC‐bib demonstrates the highest specific capacitance of 164 F g?1 at a current density of 0.5 A g?1, and also excellent retention of capacitance (≈89.4 % after 5000 cycles at 1 A g?1). Therefore, APC‐bib has great potential as the electrode material in a supercapacitor.  相似文献   

20.
Six mono/double‐layered 2D and three 3D coordination polymers were synthesized by a self‐assembly reaction of Zn (II) salts, organic dicarboxylic acids and L1/L2 ligands. These polymeric formulas are named as [Zn(L1)(C4H2O4)0.5 (H2O)]n·0.5n(C4H2O4)·2nH2O ( 1 ), [Zn2(L2)(C4H2O4)2]n·2nH2O ( 2 ), [Zn(L1)(m‐BDC)]n ( 3 ), [Zn2(L2)(m‐BDC)2]n·2nH2O ( 4 ), [Zn3(L1)2(p‐BDC)3(H2O)4]n·2nH2O ( 5 ), [Zn2(OH)(L2) (p‐BDC)1.5]n ( 6 ), [Zn2(L1)(p‐BDC)2]n·5nH2O ( 7 ), [Zn2(L2)(p‐BDC)2]n·3nH2O ( 8 ) and [Zn2(L1)(C4H4O4)1.5(H2O)]n·n(ClO4nH2O ( 9 ) [L1 = N,N′‐bis (pyridin‐4‐ylmethyl)propane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethyl)propane‐1,2‐ diamine, m‐BDC2? = m‐benzene dicarboxylate, p‐BDC2? = p‐benzene dicarboxylate]. Meanwhile, these polymers have been characterized by elemental analysis, infrared, thermogravimetry (TG), photoluminescence, powder and single‐crystal X‐ray diffraction. Polymers 1–6 present mono‐ and double (4,4)‐layer motifs accomplished by L1/L2 ligands with diverse conformations and organic dicarboxylates, and the layer thickness locates in the range of 5.8–15.0 Å. In three 3D polymers, the L1 and L2 molecules adopt the same cis‐conformations and join adjacent Zn (II) cations together with p‐BDC2? or succinate, giving rise to different binodal (4,4)‐c nets with (4.52.83)(4.53.72) ( 7 ), pts ( 8 ) topology and twofold interpenetrated binodal (5,5)‐c nets with (32.44.52.62)(3.43.52.64) ( 9 ). Therefore, the diverse conformations of the two bis (pyridyl)‐propane‐1,2‐diamines and the feature of different organic dicarboxylate can effectively influence the architectures of these polymers. Powder X‐ray diffraction patterns demonstrate that these bulk solid polymers are pure phase. TG analyses indicate that these polymers have certain thermal stability. Luminescent investigation reveals that the emission maximum of these polymers varies from 402 to 449 nm in the solid state at room temperature. Moreover, 1 , 3 and 5–8 show average luminescence lifetimes from 8.81 to 16.30 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号