首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用喷雾干燥法和焙烧处理制备中空介孔三氧化钨微球(HMTTS),在其表面进一步负载活性成分Pd,得到纳米Pd/HMTTS复合催化剂. 采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对催化剂的形貌和晶型结构进行了表征. 结果表明,Pd纳米粒子为面心立方晶体结构,均匀地分布在HMTTS表面. 采用循环伏安和计时电流法研究了在酸性溶液中Pd/HMTTS 催化剂对甲酸的电催化氧化性能,结果表明Pd/HMTTS 催化剂比普通的三氧化钨载钯催化剂(Pd/WO3)对甲酸呈现出更高的电催化氧化活性和稳定性.HMTTS独特的中空介孔结构和表面特性以及氢溢流效应有利于甲酸在钯表面的直接脱氢氧化过程的发生.  相似文献   

2.
中空介孔碳化钨微球载钯催化剂对甲酸电催化性能   总被引:1,自引:0,他引:1  
采用喷雾干燥法和还原炭化处理制备具有中空介孔结构的碳化钨钴复合粉(HTCCS),其中,钴的质量含量为6%。在碳化钨钴复合粉表面的钴和氯化钯发生置换反应,得到纳米Pd/WC复合催化剂。采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对样品的形貌和晶型结构进行了表征。结果表明, 5.0-6.0nm钯纳米粒子取代钴均匀分布在碳化钨微球表面。采用循环伏安和计时电流法研究了在酸性溶液中Pd/WC催化剂对甲酸的电催化氧化性能,结果表明,Pd/WC催化剂比Pd/C催化剂对甲酸呈现出更高的电催化氧化活性和稳定性。  相似文献   

3.
采用喷雾干燥法和还原炭化处理制备具有中空介孔结构的碳化钨钴复合粉(HTCCS),其中,钴的质量含量为6%。在碳化钨钴复合粉表面的钴和氯化钯发生置换反应,得到纳米Pd/WC复合催化剂。采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对样品的形貌和晶型结构进行了表征。结果表明,5.0-6.0 nm钯纳米粒子取代钴均匀分布在碳化钨微球表面。采用循环伏安和计时电流法研究了在酸性溶液中Pd/WC催化剂对甲酸的电催化氧化性能,结果表明,Pd/WC催化剂比Pd/C催化剂对甲酸呈现出更高的电催化氧化活性和稳定性。  相似文献   

4.
通过电解高纯石墨棒的方法制备氧化石墨,将氧化石墨在超纯水中超声,形成稳定的氧化石墨烯分散液。以氧化石墨烯分散液和氯化钯作为前驱体,采用一步电沉积法制备Pd/石墨烯纳米复合材料。用扫描电子显微镜(SEM)、X射线衍射仪(XRD)及紫外可见分光光度计(UV-vis)对物质的表面形貌及物相组成进行表征分析。用循环伏安法(CV)和计时电流法(CA)研究了Pd/石墨烯催化剂对甲酸和甲醇的电催化氧化活性。结果表明:与纳米钯修饰电极相比,Pd/石墨烯修饰电极对甲酸及甲醇的电催化氧化活性有了极大的提高。  相似文献   

5.
采用水热法和牺牲模板法相结合制备具有中空树枝结构的三氧化钨载体(d-WO3),在其表面进一步负载活性成分Pt,得到纳米Pt/d-WO3复合催化剂。采用X射线粉末衍射(XRD)、透射电镜(TEM)和比表面积和孔结构分析(BET)等对催化剂的形貌和结构进行了表征。结果表明,三氧化钨具有长6 μm和宽2 μm的中空树枝状结构,孔径分布主要集中在20~120 nm,比表面积为24 m2/g,平均粒径为7.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了Pt/d-WO3催化剂在酸性溶液中对甲醇的电催化氧化性能。结果表明,Pt/d-WO3催化剂比Pt/C和Pt/WO3催化剂对甲醇有更高的电催化氧化活性和稳定性。d-WO3所具有的中空介孔结构和双功能作用机理有利于甲醇在铂表面的直接脱氢氧化过程。  相似文献   

6.
通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致.  相似文献   

7.
采用处理与未处理的活性炭制备Pd/c催化剂,运用循环伏安法(CV)和计时电流法检测两种Pd/C催化剂对甲酸的电催化氧化活性和稳定性.通过透射电镜(TEM)对催化剂进行了表征.结果表明,用硝酸处理的活性炭所制备的Pd/C催化剂中Pd粒子的分散更均匀,对甲酸的电催化氧化活性和稳定性都有不同程度的提高.  相似文献   

8.
合成并比较了碳载Au(Au/C)、碳载Pd(Pd/C)、碳载高合金化Pd-Au(Pd-Au/C-T)和碳载非合金化Pd-Au(Pd-Au/C-H)催化剂对甲酸氧化的电催化活性和稳定性.结果表明,Au/C对甲酸氧化基本没有电催化活性,而Pd/C对甲酸氧化有较好的电催化性能,Au的加入能进一步提高Pd催化剂对甲酸氧化的电催化活性和稳定性,特别是Pd-Au/C-T对甲酸氧化的电催化活性和稳定性要好于Pd-Au/C-H,更远好于Pd/C催化剂.相关反应机理有待进一步揭示.  相似文献   

9.
采用表面修饰技术将WO_3晶粒引入到氧化石墨烯(GO)表面,通过硼氢化钾还原法制备了载钯催化剂Pd/WO_3-RGO.对催化剂进行了结构和形貌表征,并考察了该催化剂对甲酸氧化的电催化性能.结果表明,Pd/WO_3-RGO催化剂由石墨烯、单斜态WO_3和立方面心Pd晶粒组成,Pd颗粒均匀分散在载体上;使用Pd/20%WO_3-RGO催化剂电极时的甲酸氧化最大峰电流密度大幅增加,是Pd/RGO催化剂电极甲酸氧化峰电流密度的2.5倍;Pd/WO_3-RGO催化剂稳定性大大增强,且具有更加优异的抗CO中毒能力;Pd晶粒与WO_3晶粒的相互交叠有利于它们之间的催化协同效应,增强催化剂的催化性能.  相似文献   

10.
通过浸渍法和硫引入贵金属法分别制备了主要负载在介孔碳主孔道(MPC/Pd-1)和负载在介孔碳孔壁上小介孔中[MPC/(S)Pd-2]的两类负载型钯电催化剂, 用XRD, SEM, TEM和电化学等方法表征了其结构和电催化性能. 循环伏安结果表明, 有序介孔碳载钯催化剂MPC/Pd-1和MPC/(S)Pd-2对甲酸氧化的催化活性分别是商用钯黑催化剂的4.0和2.4倍. MPC/Pd-1中的钯位于介孔碳的主孔道上, 增加了催化剂/电解质/反应物三相界面的面积, 使得其比MPC/(S)Pd-2的催化活性更高.  相似文献   

11.
沈娟章  季芸  陈赵杨  马淳安  陆天虹 《应用化学》2012,29(12):1463-1467
研究了碳化钨(WC)和Vulcan XC-72炭黑(XC)作混合载体的Pd/WC-XC催化剂对甲酸氧化的电催化性能.发现Pd/WC-XC催化剂对甲酸氧化的电催化性能优于Pd/XC催化剂.而且,Pd/WC-XC催化剂的电催化性能与WC和XC的质量比有关,当质量比为3:1时,催化剂对甲酸氧化的电催化活性最好,当质量比为2:1时,催化剂对甲酸氧化的电催化稳定性性最好.  相似文献   

12.
利用水热合成和无机溶胶法,分别制备了具有棒状(TiO2-R)和无规则结构(TiO2-I)的锐钛矿相TiO2,并以之为载体制备得到Pd/TiO2电催化剂.循环伏安测试显示,与无规则TiO2相比,具有棒状结构的TiO2载Pd催化剂对甲酸氧化的电催化性能提高了70%;计时电流测试显示,运行3000 s后,甲酸在棒状TiO2载Pd催化剂上的氧化电流是无规则TiO2载Pd催化剂的16倍.其原因可能与TiO2纳米棒拥有更好的电子传导性且表面拥有较多的活性含氧基团有关,从而能够有效提高催化剂对甲酸氧化的电催化活性和抗毒化性能.  相似文献   

13.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得nPANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/nPANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍; Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

14.
为了提高直接甲酸燃料电池(DFAFC)中炭载Pd(Pd/C)催化剂对甲酸氧化的电催化性能,用回流法制备了磷钼酸(PMA)修饰的炭载Pd(PMA-Pd/C)催化剂.并用谱学技术和电化学技术表征了催化剂的组分和结构,发现PMA通过化学作用而牢固地固定在Pd表面.由于PMA-Pd/C催化剂能抑制甲酸的自分解,因此,PMA-Pd/C催化剂对甲酸氧化的电催化性能优于Pd/C催化剂.  相似文献   

15.
碳载PdPb催化剂的制备及对甲酸氧化的电催化性能   总被引:1,自引:0,他引:1  
采用液相还原共沉积法制备出高活性纳米电催化剂PdPb/C, 研究发现, 碳载Pd催化剂中加入Pb能够提高催化剂对甲酸的电氧化活性, 并改变甲酸氧化的反应机理. 少量Pb的加入能够提高催化剂中活性粒子的分散度, 且大幅度提高催化剂对甲酸氧化的电催化活性. 当催化剂中Pd与Pb的质量比为8: 1时, 对甲酸的电氧化活性最高, 峰电流密度约为Pd/C催化剂上的180%; 而当Pd与Pb的质量比为2: 1时, 催化剂对甲酸氧化的稳定性最好.  相似文献   

16.
以甲酸为燃料、 Fe3+为氧化剂组成了一种新型的甲酸/铁离子燃料电池, 阳极催化剂为多壁碳纳米管(MWCNT)或β-环糊精修饰的MWCNT(β-CD-MWCNT)负载的金属钯或钯锡纳米颗粒: PdSn/MWCNT, Pd/β-CD-MWCNT和PdSn/β-CD-MWCNT. 运用循环伏安(CV)和计时电流(CA)等技术研究了各催化剂在碱性条件下对甲酸氧化反应的电催化活性. 结果表明, 加入适量的金属锡能促进钯对甲酸的电催化氧化, 甲酸氧化电位提前, 电流密度增加; 环糊精的改性对催化剂电催化活性有一定提升. 将上述催化剂制成电池阳极片, 碳粉制成电极阴极片, 组成甲酸/铁离子燃料电池并测试其放电性能. 结果表明, 电池的开路电压在0.981.20 V之间; 以PdSn/β-CD-MWCNT为阳极时, 其最大放电电流密度达50 mA/cm2, 最大功率密度达12.6 mW/cm2, 远优于以Pd/C为阳极的电池性能.  相似文献   

17.
采用硼氢化钾还原法制备了石墨烯负载PdCo催化剂(PdCo/RGO),对催化剂进行了结构形貌表征并考察了其对甲酸氧化的催化性能.表征结果表明催化剂形成了立方面心结构的PdCo合金纳米颗粒.与Pd/RGO催化剂相比,PdCo/RGO催化剂上Pd颗粒团聚现象明显改善,平均粒径大大减小且分散性更好.电化学性能测试结果表明,相比于Pd/RGO催化剂,不同比例的PdCo/RGO催化剂具有不同的甲酸氧化电催化活性和稳定性;其中2Pd1Co/RGO性能最佳,最大甲酸氧化峰电位负向移动约60mV,电流密度增大到2.2倍.PdCo/RGO催化剂催化性能优异,显示了很好的甲酸阳极催化剂应用前景.  相似文献   

18.
应用晶种生长法制得金纳米立方体,Aucore-Pdshell和Aucore-Pdshell-Ptcluster电催化剂,通过改变溶液的H2PdCl4和H2PtCl6的用量以控制Pdshell的厚度和Ptcluster的覆盖度.采用扫描电镜(SEM)、透射电镜(TEM)观察了金纳米立方体的表面结构.利用循环伏安法(CV)研究了不同Pd层厚度的立方体形Aucore-Pdshell纳米粒子和不同Pt岛覆盖度的立方体形Aucore-Pdshell-Ptcluster纳米粒子对甲酸氧化的电催化性能.结果表明,与立方体形Aucore-Pdshell纳米粒子相比,"核-壳-岛"结构的立方体形Aucore-Pdshell-Ptcluster纳米粒子对甲酸的电氧化具有更高活性.当Pd壳层厚度为3层,Pt岛覆盖度为0.5时,电催化活性最高.  相似文献   

19.
本文采用"一锅法"将氧化石墨烯(GO)、炭黑(C)和钯离子用NaBH4共还原,制备了石墨烯-炭黑二元载体(Gr-C)负载的钯催化剂(20%Pd/Gr-C),用于催化甲酸的电氧化反应.电化学测试结果表明,前驱体GO和C的质量比为3:7的Pd/Gr0.3C0.7催化剂催化活性最好,它的峰电流密度(102.14 mA mgPd-1)约为Pd/C催化剂(34.40 mA mgPd-1)的3倍,为钯/石墨烯催化剂(Pd/Gr,38.50 mA mgPd-1)的2.6倍.甲酸在Pd/Gr0.3C0.7催化剂电极直接氧化时的峰电位比Pd/C催化剂的峰电位负移约120 mV,比Pd/Gr催化剂的峰电位负移约70 mV.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、电感耦合等离子发射光谱(ICP-AES)等手段对催化剂进行了表征.从SEM图像可以观察到,球形的炭黑团簇聚集在具有褶皱的石墨烯面上,形成了炭黑团簇/石墨烯三维立体结构,有效地抑制了相邻石墨烯层在范德华力作用下的吸引聚集和堆叠造成的石墨烯表面积减小,减小了单层石墨烯叠合成为多层石墨所造成的导电性损失,避免了相邻石墨烯片叠合形成封闭空间,有助于反应物和产物分子的运动.载体的三维结构使反应物分子更容易到达钯纳米粒子,有利于催化性能的提高.XPS结果也证实了二元Gr-C载体对Pd催化的促进作用.Pd/Gr0.3C0.7催化剂的Pd 3d5/2峰发生了右移,表明Pd 3d电子结合能正移,Pd 3d电子云密度降低.具有较低的3d电子云密度的Pd不易与甲酸氧化过程中吸附的中间体(COOH)ads结合,钯催化剂上(COOH)ads表面覆盖率降低,从而使甲酸更容易直接脱氢氧化生成CO2,有利于甲酸通过直接途径进行电化学氧化.与Pd/C,Pd/Gr相比,Pd/Gr0.3C0.7催化剂对甲酸电氧化有最好的催化活性.Pd/Gr0.3C0.7催化剂优异的催化活性可归因于其内在的三维纳米结构:炭黑团簇有效地抑制了石墨烯纳米片的聚集,保持了其大的比表面积和高导电性,促进了反应物和产物分子的运动.此外,Pd纳米粒子与二元载体之间的强相互作用降低了Pd的3d电子云密度,使甲酸氧化主要经直接途径进行.本文证实了钯金属和石墨烯-炭黑二元载体之间的强相互作用,提供了简单和高性价比的方法以提高钯基催化剂的活性,有利于工业化的应用.  相似文献   

20.
直接甲酸燃料电池(DFAFC)的两大问题是炭载Pd(Pd/C)催化剂对甲酸氧化的电催化稳定性不好和Pd催化剂能催化甲酸分解。发现用NH4F络合还原法制备的NH4F修饰Pd/C催化剂对甲酸氧化的电催化活性要比Pd/C催化剂好大约20%,电催化稳定性也要稍优于Pd/C催化剂。在120 s内和30℃下,甲酸在Pd/C催化剂上分解产生38 mL气体,但在NH4F修饰Pd/C催化剂上基本上不分解,因此NH4F修饰主要能抑制Pd催化剂催化分解甲酸的能力,而且又能在一定程度上提高Pd/C催化剂对甲酸氧化的电催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号