首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of aromatic poly(ether imide)s containing spirobifluorene units in the polymer backbone is described. 2,2′‐Bis(3,4‐dicarboxyphenoxy)‐9,9′‐spirobifluorene dianhydride, which was used as a new monomer, was synthesized with 2,2′‐dihydroxy‐9,9′‐spirobifluorene as the starting material. In the spiro‐segment, the rings of the connected bifluorene were orthogonally arranged. This bis(ether anhydride) monomer was employed in reactions with a variety of aromatic diamines to furnish poly(ether imide)s, involving an initial ring‐opening polycondensation and subsequent chemically induced cyclodehydration. Excellent solubility in common organic solvents at room temperature, good optical transparency, and high thermal stability are the prominent characteristic features of these new polymers, which can be attributed to the presence of spiro‐fused orthogonal bifluorene segments along the polymer chain. The glass‐transition temperatures of the polyimides were 240–293 °C, and the 5% weight‐loss temperatures were greater than 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 262–268, 2002  相似文献   

2.
The synthesis and properties of organosoluble aromatic polyimides, containing spiro‐skeletal units in the polymer backbone on the basis of the spiro‐diamine monomer, 2,2′‐diamino‐9,9′‐spirobifluorene, are described. In the case of the spiro segment, the two fluorene rings are orthogonally arranged and connected through a tetrahedral bonding carbon atom, the spiro center. As a consequence, the polymer chain is periodically zigzagged with a 90° angle at each spiro center. This structural feature minimizes interchain interactions and restricts the close packing of the polymer chains, resulting in amorphous polyimides that have good solubility in organic solvents. Compared with their fluorene‐based cardo analogues, the spirobifluorene‐based polyimides have an improved solubility. Furthermore, the main‐chain rigidity of the polyimide appears to be preserved because of the presence of the spiro structure, which restricts the free segmental mobility. As a result, these polyimides exhibit a high glass‐transition temperature (Tg's) and good thermal stability. The Tg's of these polyimides were in the range of 287–374 °C, and the decomposition temperatures in nitrogen for a 10% weight loss occurred at temperatures above 570 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3615–3621, 2002  相似文献   

3.
Poly(arylene thioether)s ( PTEs ) containing 9,9′‐spirobifluorene moieties were synthesized in high yields from 9,9′‐spirobifluorene‐2,2′‐bis(N,N‐dimethylcarbamothioate) 4 as the masked dithiol and various difluoroarenes as electrophilic monomers. All PTEs showed high thermal stability: The 10% weight loss temperature as evaluated by thermogravimetric analysis was over 470 °C under both nitrogen and air atmospheres. The glass transition temperature estimated by DSC was in the range 210–270 °C. The PTEs showed high solubility in ordinary organic solvents, such as CHCl3, NMP, and THF. Most PTEs exhibited remarkably high refractive indices ranging from 1.69 to 1.73 at 587.6 nm, whereas no or little birefringence was observed for the PTEs . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4192–4199, 2010  相似文献   

4.
Syntheses of 2,2′‐bisalcoholic group‐substituted 9,9′‐spirobifluorene monomers 2 were performed by the reaction of 2,2′‐dihydroxy‐9,9′‐spirobifluorene 2a with haloalcohols. Polycarbonates consisting of 9,9′‐spirobifluorene skeleton in the main chain (PC 4 ) were synthesized by the polycondensation of 2,2′‐bisalcoholic monomers 2 and triphosgene or diphenyl carbonate. PC 4 showed good thermal stability: the 5% weight loss temperature was over 330 °C under both nitrogen and air atmospheres. The glass transition temperature was in a range of 16–269 °C estimated by differential scanning calorimetry, depending on the flexibility of the alkylene or oxyethylene chains of 2 . PC 4 showed high solubility toward ordinary organic solvents such as CHCl3, benzene, and THF, making possible the preparation of the flexible thin films. Very high refractive index in a range of 1.62–1.66 at 589 nm was observed although PC 4 consists only of C, H, and O atoms, whereas very low degree of birefringence was confirmed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3658–3667, 2010  相似文献   

5.
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002  相似文献   

6.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

7.
A series of organosoluble, aromatic polyamides were synthesized from a 4‐methyl‐substituted, triphenylamine‐containing, aromatic diacid monomer, 4,4′‐dicarboxy‐4″‐methyltriphenylamine, which is a blue‐light (454‐nm) emitter with a fluorescence quantum efficiency of 46%. These triphenylamine‐based, high‐performance polymers had strong fluorescence emissions in the blue region with high quantum yields up to 64% and one reversible oxidation redox couple around 1.20 V versus Ag/AgCl in acetonitrile solutions. They exhibited good thermal stability, with 10% weight loss temperatures above 480 °C under a nitrogen atmosphere and with relatively high glass‐transition temperatures (252–309 °C). All the polyamides revealed excellent stability of electrochromic characteristics, changing color from the original pale yellow to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4095–4107, 2006  相似文献   

8.
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009  相似文献   

9.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

10.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

11.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

12.
New aromatic tetracarboxylic dianhydride, having isopropylidene and bromo‐substituted arylene ether structure 3,3′,5,5′‐tetrabromo‐2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride, was synthesized by the reaction of 4‐nitrophthalonitrile with 3,3′,5,5′‐tetrabromobisphenol A, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). The novel aromatic polyetherimides having inherent viscosities up to 1.04 dL g−1 were obtained by either a one‐step or a conventional two‐step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), pyridine, and even in less polar solvents like chloroform and tetrahydrofuran (THF). These aromatic polyimides had glass transition temperatures in the range of 256–303°C, depending on the nature of the diamine moiety. Thermogravimetric analysis (TGA) showed that all polymers were stable, with 10% weight loss recorded above 470°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1673–1680, 1999  相似文献   

13.
A new bis(triphenylamine)‐type dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was prepared by a well‐established procedure and led to a new family of redox‐active aromatic polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenylphenylenediamine (TPPA) segments. The resulting polyamides were amorphous with good solubility in many organic solvents, and most of them could be solution cast into flexible polymer films. The polyamides exhibited high thermal stability with glass‐transition temperatures in the range of 247–293 °C and 10% weight‐loss temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during oxidative scanning, with a strong color change from a colorless or pale yellowish neutral form to green and blue oxidized forms. They had enhanced redox stability and electrochromic performance when compared with the corresponding analogs without tert‐butyl substituents on the TPPA unit. The polyamide with TPPA units in both the diacid and diamine components shows multicolored electrochromic behavior. A polyamide containing both the cathodic coloring anthraquinone chromophore and the anodic coloring TPPA chromophore has the ability to show red, green, and blue states, toward single‐component RGB electrochromics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A new triphenylamine‐containing aromatic dicarboxylic acid, N,N′‐bis(4‐carboxyphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was synthesized by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluorobenzonitrile, followed by the alkaline hydrolysis of the intermediate dinitrile compound. A series of novel triphenylamine‐based aromatic poly(amine amide)s with inherent viscosities of 0.50–1.02 dL/g were prepared from the diacid and various aromatic diamines by direct phosphorylation polycondensation. All the poly(amine amide)s were amorphous in nature, as evidenced by X‐ray diffractograms. Most of the poly(amine amide)s were quite soluble in a variety of organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with glass‐transition temperatures up to 280 °C, 10% weight‐loss temperatures in excess of 575 °C, and char yields at 800 °C in nitrogen higher than 60%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 94–105, 2003  相似文献   

15.
A new bis(o‐aminophenol) with a crank and twisted noncoplanar structure and ether linkages, 2,2′‐bis(4‐amino‐3‐hydroxyphenoxy)biphenyl, was synthesized by the reaction of 2‐benzyloxy‐4‐fluoronitrobenzene with biphenyl‐2,2′‐diol, followed by reduction. Biphenyl‐2,2′‐diyl‐containing aromatic poly(ether benzoxazole)s with inherent viscosities of 0.52–1.01 dL/g were obtained by a conventional two‐step procedure involving the polycondensation of the bis(o‐aminophenol) monomer with various aromatic dicarboxylic acid chlorides, yielding precursor poly(ether o‐hydroxyamide)s, and subsequent thermal cyclodehydration. These new aromatic poly(ether benzoxazole)s were soluble in methanesulfonic acid, and some of them dissolved in m‐cresol. The aromatic poly(ether benzoxazole)s had glass‐transition temperatures of 190–251 °C and were stable up to 380 °C in nitrogen, with 10% weight losses being recorded above 520 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2656–2662, 2002  相似文献   

16.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A new triphenylamine‐based diamine monomer, 4,4′‐diamino‐2″,4″‐dimethoxytriphenylamine ( 2 ), was synthesized from readily available reagents and was reacted with various aromatic dicarboxylic acids to produce a series of aromatic polyamides ( 4a–h ) containing the redox‐active 2,4‐dimethoxy‐substituted triphenylamine (dimethoxyTPA) unit. All the resulting polyamides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers exhibited good thermal stability with glass transition temperatures of 243–289 °C and softening temperatures of 238–280 °C, 10% weight loss temperatures in excess of 470 °C in nitrogen, and char yields higher than 60% at 800 °C in nitrogen. The redox behaviors of the polymers were examined using cyclic voltammetry (CV). All these polyamides showed two reversible oxidation processes in the first CV scan. The polymers also displayed low ionization potentials as a result of their dimethoxyTPA moieties. In addition, the polymers displayed excellent stability of electrochromic characteristics with coloration change from a colorless neutral state to green and blue‐purple oxidized states. These anodically coloring polyamides showed high green coloration efficiency (CE = 329 cm2/C), high contrast of optical transmittance change (ΔT% = 84% at 829 nm), and long‐term redox reversibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3392–3401, 2010  相似文献   

18.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

19.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号