首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of organosoluble, aromatic polyamides were synthesized from a 4‐methyl‐substituted, triphenylamine‐containing, aromatic diacid monomer, 4,4′‐dicarboxy‐4″‐methyltriphenylamine, which is a blue‐light (454‐nm) emitter with a fluorescence quantum efficiency of 46%. These triphenylamine‐based, high‐performance polymers had strong fluorescence emissions in the blue region with high quantum yields up to 64% and one reversible oxidation redox couple around 1.20 V versus Ag/AgCl in acetonitrile solutions. They exhibited good thermal stability, with 10% weight loss temperatures above 480 °C under a nitrogen atmosphere and with relatively high glass‐transition temperatures (252–309 °C). All the polyamides revealed excellent stability of electrochromic characteristics, changing color from the original pale yellow to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4095–4107, 2006  相似文献   

2.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Two series of new organosoluble polyamides with methyl‐substituted triphenylamine (MeTPA) units showing anodically electrochromic characteristic were prepared from the phosphorylation polyamidation reaction of two diamine monomers, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 2 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ′), with various dicarboxylic acids, respectively. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with relatively high glass‐transition temperatures (Tg) (314–329 °C) and high char yields (higher than 62% at 800 °C in nitrogen). In addition, the polymer films showed reversible electrochemical oxidation, high coloration efficiency (CE), low switching time, and anodic green electrochromic behavior. The unexpected electrochemical behavior of higher oxidation potential and lower electrochemical stability of Me3TPA‐polyamides I than MeTPA corresponding polymers could be attributed to the higher steric hindrance of ortho‐substituents in Me3TPA moieties, thus made the resonance stabilization of cation radical much more difficult for the Me3‐substituted phenyl ring. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002  相似文献   

5.
A novel adamantoxytriphenylamine‐containing diamine monomer, 4‐(1‐adamantoxy)‐4′,4″‐diaminotriphenylamine, was synthesized from readily available reagents. Two series of novel electroactive aromatic polyamides and polyimides with bulky 4‐(1‐adamantoxy)triphenylamine moieties were prepared from the newly synthesized diamine monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the resulting polyamides and most of the polyimides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers showed moderate to high glass transition temperatures in the range of 263–311 °C, and they were fairly stable up to a temperature above 480 °C (for polyamides) or 500 °C (for polyimides). Cyclic voltammograms of the polyamides and polyimides showed one pair of reversible redox waves with oxidation half‐wave potentials (E1/2) in the range of 0.78–0.81 and 0.97–1.05 V, respectively, versus Ag/AgCl in an acetonitrile solution. In addition, the polymers were found to display stable electrochromic properties by repeated cyclic scans between 0.0 and 1.1–1.2 V, with coloration change from a colorless or pale yellowish neutral form to a dark blue or bluish green oxidized form. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1740–1755, 2009  相似文献   

6.
A new class of electroactive polyamides with ether‐linked bis(triphenylamine) [O(TPA)2] units were prepared through the direct phosphorylation polycondensation from N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline and aromatic dicarboxylic acids. These polyamides were amorphous with good solubility in many organic solvents, such as NMP and DMAc, and could be solution‐cast into strong and flexible polymer films. Their decomposition temperatures (Td) at a 10% weight‐loss in nitrogen and air were recorded at 556–568 °C and 537–555 °C, respectively. The glass‐transition temperatures (Tg) of all the polyamides were observed in the range of 218?253 °C by DSC. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.80–0.82 V and 0.96–0.98 V versus Ag/AgCl in an electrolyte containing acetonitrile solution. The polyamide films showed excellent electrochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and purple oxidized forms at applied potentials ranging from 0 to 1.2 V. These polymers can also be used to fabricate electrochromic devices, and they showed high coloration efficiency, high redox stability, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 496–510  相似文献   

7.
A series of novel poly(amine–amide–imide)s (PAAIs) based on tetraphenyl‐p‐phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA‐based diamine monomer with various aromatic bis(trimellitimide)s. These multicolored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass‐transition temperatures (288–314 °C) and high‐char yield (higher than 60% at 800 °C in nitrogen). The PAAI films revealed electrochemical oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, respectively. The electrochromic films had high‐coloration efficiency (CE = 178 and 242 cm2/C at the first and the second stages, respectively), low‐switching time, and good redox stability, which still retained a high electroactivity after long‐term redox cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009  相似文献   

9.
A new triphenylamine‐based aromatic dicarboxylic acid monomer, 4‐tert‐butyl‐4′,4″‐dicarboxytriphenylamine ( 2 ), was synthesized from the cesium fluoride mediated N,N‐diarylation reaction of 4‐tert‐butylaniline with 4‐fluorobenzonitrile and subsequent alkaline hydrolysis of the dinitrile intermediate. A series of six aromatic polyamides 4a‐4f with tert‐butyltriphenylamine groups was prepared from the newly synthesized dicarboxylic acid and various aromatic diamines. These polyamides were readily soluble in many organic solvents and could be solution‐cast into flexible and strong films. The glass‐transition temperatures of these polymers were in the range of 274–311 °C. These polymers exhibited strong UV‐vis absorption bands at 356–366 nm in NMP solution. Their photoluminescence spectra showed maximum bands around 433–466 nm in the blue region. Cyclic voltammograms of all the polyamides exhibited reversible oxidation redox couples in acetonitrile. The polyamide 4f, with tert‐butyltriphenylamine segment in both diacid and diamine residues, exhibited stable electrochromic characteristics with a color change from a colorless neutral form, through a green semioxidized form, to a deep purple fully oxidized form. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2798–2809, 2010  相似文献   

10.
A series of solution‐processable electrochromic (EC) aromatic polyamides with bis(triphenylamine)ether (TPAO) units in the backbone were prepared by the phosphorylation polyamidation from a newly synthesized diamine monomer, bis(N‐4‐aminophenyl‐N‐4‐methoxyphenyl‐4‐aminophenyl)ether, and various dicarboxylic acids. These polymers were highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures and high char yields (higher than 50 at 800 °C in nitrogen). The polymer films showed reversible electrochemical oxidation and electrochromism with high contrast ratio in the visible range, which also exhibited moderate coloration efficiency (CE), low switching time, and good stability. Especially, the polyamides with two electroactive nitrogen centers only showed one‐stage oxidative coloring (no intervalence charge‐transfer [IV‐CT] band was detected), implying the two electrons are simultaneously removed from the TPAO units on account of the ether‐linkage definitely isolated the two redox centers. The mixed‐valence (MV) Class I/II/III transition and electrochemistry of the synthesized model compounds were investigated for the bridged triarylamine system with various N? N distances and intramolecular electron transfer (ET) capability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Two novel series of ambipolar and near‐infrared electrochromic aromatic polyamides with electroactive anthraquinone group were synthesized from new aromatic diamines, 2‐(bis(4‐aminophenyl)amino)anthracene‐9,10‐dione and 2‐(4‐(bis(4‐aminophenyl)amino)phenoxy)anthracene‐9,10‐dione, respectively, via low‐temperature solution polycondensation reaction. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (Tg) (285–360 °C). Electrochemical studies of these electrochromic polyamides revealed ambipolar behavior with reversible redox couples and high contrast ratio both in the visible range and near‐infrared region. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15–1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine‐based aromatic dicarboxylic acid, 1‐[N,N‐di(4‐carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass‐transition temperatures (268–355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet–visible absorption at 350–358 nm and exhibited fluorescence emission maxima around 435–458 nm in N‐methyl‐2‐pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08–1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094–6102, 2006  相似文献   

13.
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838  相似文献   

14.
A new bis(triphenylamine)‐type dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was prepared by a well‐established procedure and led to a new family of redox‐active aromatic polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenylphenylenediamine (TPPA) segments. The resulting polyamides were amorphous with good solubility in many organic solvents, and most of them could be solution cast into flexible polymer films. The polyamides exhibited high thermal stability with glass‐transition temperatures in the range of 247–293 °C and 10% weight‐loss temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during oxidative scanning, with a strong color change from a colorless or pale yellowish neutral form to green and blue oxidized forms. They had enhanced redox stability and electrochromic performance when compared with the corresponding analogs without tert‐butyl substituents on the TPPA unit. The polyamide with TPPA units in both the diacid and diamine components shows multicolored electrochromic behavior. A polyamide containing both the cathodic coloring anthraquinone chromophore and the anodic coloring TPPA chromophore has the ability to show red, green, and blue states, toward single‐component RGB electrochromics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A new triphenylamine‐containing diamine monomer, 4,4′‐diamino‐4″‐tert‐butyltriphenylamine, was successfully synthesized by the cesium fluoride‐mediated N,N‐diarylation of 4‐tert‐butylaniline with 4‐fluoronitrobenzene, followed by the reduction of the nitro group. The obtained diamine monomer was reacted with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to produce two series of novel triphenylamine‐based polyamides and polyimides with pendent tert‐butyl substituents. Most of the polymers were readily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and could be solution cast into tough and flexible polymer films. These polymers showed high glass transition temperatures between 282 and 320 °C, and they were fairly stable up to a temperature above 450 °C (for polyamides) or 500 °C (for polyimides). These polymers exhibited UV absorption maxima around 308 to 361 nm. The photoluminescence spectra of the polyamides in DMAc exhibited a peak emission wavelength in the blue at 421–433 nm. Cyclic voltammograms of polyamides and polyimides showed an oxidation wave at 1.0–1.1 V versus Ag/AgCl in an acetonitrile solution. All the polyamides and polyimides exhibited excellent reversibility of electrochromic characteristics by continuous several cyclic scans between 0.0 and 1.1–1.3 V, with a color change from the original pale yellowish neutral form to the green or blue oxidized forms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4579–4592, 2006  相似文献   

16.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

17.
A series of electroactive polyetherimides (PEIs) with triphenylamine (TPA) units were prepared from the polycondensation reactions of 4,4′‐bis(p‐aminophenoxy)triphenylamine with aromatic tetracarboxylic dianhydrides via a conventional two‐step technique. The PEIs showed high thermal stability, with glass‐transition temperatures of 234–282 °C and decomposition temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during both p‐ and n‐doping processes, together with multielectrochromic behaviors. These polymers exhibited enhanced redox‐stability and electrochromic performance as compared with the corresponding analogs without the phenoxy spacer between the TPA and imide units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2925–2938  相似文献   

18.
Three series of aromatic polyamides, polyesters, and poly(1,3,4‐oxadiazole)s containing bulky fluorene structures were prepared from 9,9‐bis(4‐carboxyphenyl) fluorene. All of the polymers were readily soluble in many organic solvents and showed useful thermal stability associated with high glass‐transition temperatures in the range of 220–366 °C. These wholly aromatic polymer films were colorless, with high optical transparency, and exhibited UV‐vis absorption bands at 266–348 nm and photoluminescence maximum bands at 368–457 nm within the purple to green region in N,N‐dimethylacetamide (DMAc) solutions. The poly(amine‐amide) Ic exhibited excellent electrochromic contrast and coloration efficiency, changing color from the colorless neutral form to green and then to the dark blue oxidized forms with good stability of electrochromic characteristics. Almost all of these wholly aromatic polymer films were colorless and showed high optical transparency. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4352–4363, 2007  相似文献   

19.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号