首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

2.
A novel dianhydride monomer, 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]pyromellitic dianhydride (12FPMDA), was synthesized via a three‐step process: (1) the preparation of 3,5‐bis(trifluoromethyl)benzene boronic acid (6FBB) and 3,6‐dibromo‐1,2,4,5‐tetramethylbenzene (2B4MB) via Grignard and bromination reactions, respectively; (2) the Suzuki cross‐coupling reaction of 6FBB and 2B4MB, resulting in 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]tetramethylbenzene (12F4MB); and (3) the oxidation and cyclodehydration of 12F4MB to afford 12FPMDA. 12FPMDA was then characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and a melting‐point apparatus, and it was used to prepare polyimides with aromatic diamines such as 1,1‐bis(4‐aminophenyl)‐2,2,2‐trifluoroethane and 4,4′‐diaminodiphenylether. Polyimides were synthesized via a two‐step process: (1) the preparation of poly(amic acid) in p‐chlorophenol with isoquinoline and (2) solution imidization at the reflux temperature for 12 h. They were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry. The resulting polyimides were characterized by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, and their solubility, solution viscosity, water absorption, coefficients of thermal expansion (CTEs), and dielectric constants were also evaluated. The polyimides exhibited excellent solubility even in acetone and toluene, high glass‐transition temperatures (>311 °C), good thermal stability (>518 °C in air), and well‐controlled molecular weights (19,000–21,000 g/mol). They also provided low CTEs (35–50 ppm/°C), water absorption (1.26–1.35 wt %), and dielectric constants (2.49–2.52). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4217–4227, 2002  相似文献   

3.
A new diamine containing isopropylidene, methyl substituted arylene ether, and trifluoromethyl groups, 2,2‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)‐3,5‐dimethylphenyl]propane (BTADP), was synthesized and used in preparation of a series of polyimides by direct polycondensation with various aromatic tetracarboxylic dianhydrides in N, N‐dimethylacetamide (DMAc). All polymers derived from diamine (BTADP) with trifluoromethyl substituents were highly organosoluble in the solvents, like N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide, N,N‐dimethylformamide (DMF), pyridine, chloroform, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dichloromethane, cyclohexanone, and γ‐butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polyimides were found to range between 0.58 and 0.97 dL·g?1. These polyimides had glass transition temperatures between 256 and 307 °C, and their 10% mass loss temperatures ranged from 440 to 462 °C and 421 to 443 °C under nitrogen and air, respectively. These polyimides had low dielectric constants in the range of 2.84–3.09. All the polyimides could be cast into films from DMAc solutions and were thermally converted into color lightness, optically transparent, flexible, and tough polyimides. The polyimide films had a tensile strength in the range of 83–97 MPa and a tensile modulus in the range of 2.0–2.2 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5766–5774, 2004  相似文献   

4.
A novel structurally asymmetric bis(ether amine) monomer containing trifluoromethyl groups, 1,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 1,7‐dihydroxynaphthalene in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal or chemical imidization method. The intermediate poly(amic acid)s had inherent viscosities between 0.93 and 1.93 dL/g. Most of the polyimides obtained from both routes were readily soluble in many organic solvents such as NMP and N,N‐dimethylacetamide (DMAc). All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.29–0.69%, low dielectric constants of 2.81–3.23 at 10 kHz, and an ultraviolet‐visible absorption cutoff wavelength at 358–423 nm. The glass‐transition temperatures (Tgs) (by DSC) and softening temperatures (by thermomechanical analysis) of the polyimides were recorded in the range of 222–271 °C and 210–266 °C, respectively. Decomposition temperatures for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. For a comparative study, some properties of the present polyimides will be compared with those of structurally related ones derived from 1,7‐bis(4‐aminophenoxy)naphthalene and 1,5‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1756–1770, 2009  相似文献   

5.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

6.
Novel sulfonated polyimides (SPIs) were prepared from 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), 2,2′‐bis(4‐aminophenoxy)biphenyl‐5,5′‐disulfonic acid (oBAPBDS) with nonlinear configuration, and common nonsulfonated diamines. Water uptake (WU) in liquid and vapor, water stability, and proton conductivity σ of the resulting SPI membranes were investigated. They were soluble in m‐cresol and dimethylsulfoxide, and their WUs in liquid were much larger than those of the SPIs from other sulfonated diamines with linear configuration such as 4,4′‐bis(4‐aminophenoxy)biphenyl‐3,3′‐disulfonic acid (BAPBDS). NTDA‐oBAPBDS membrane was soluble in water at room temperature, whereas all the oBAPBDS‐based copolyimide membranes were insoluble in water and maintained mechanical strength after being soaked in distilled water at 80 °C for 40–1000 h. This much improved water stability was due to the enhanced solubility stability of membrane toward water. The water vapor sorption isotherms were rather similar between the SPIs with the nonlinear and linear configurations of sulfonated diamine moieties. The present SPIs with IECs of 1.8–2.6 meq/g, including NTDA‐BAPBDS, showed reasonably high proton conductivities under the highly humid conditions and roughly fell on the same σ–WU relation line. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1432–1440, 2004  相似文献   

7.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

8.
To investigate the position and amount of the CF3 group affecting the coloration of polyimides (PIs), we prepared 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]hexafluoropropane ( 2 ) with four CF3 groups with 2‐chloro‐5‐nitrobenzotrifluoride and 2,2‐bis(4‐hydroxyphenol)hexafluoropropane. A series of soluble and light‐colored fluorinated PIs ( 5 ) were synthesized from 2 and various aromatic dianhydrides ( 3a – 3f ). 5a – 5f had inherent viscosities ranging from 0.80 to 1.19 dL/g and were soluble in amide polar solvents and even in less polar solvents. The glass‐transition temperatures of 5 were 221–265 °C, and the 10% weight‐loss temperatures were above 493 °C. Their films had cutoff wavelengths between 343 and 390 nm, b* values (a yellowness index) ranging from 5 to 41, dielectric constants of 2.68–3.01 (1 MHz), and moisture absorptions of 0.03–0.29 wt %. In a comparison of the PI series 6 – 8 based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane, we found that the CF3 group close to the imide group was more effective in lowering the color; this means that CF3 of 5 , 7 , and 8f was more effective than that of 6c . The color intensity of the four PI series was lowered in the following order: 5 > 7 > 6 > 8 . The PI 5f , synthesized from diamine 2 and 4,4′‐hexafluoroisopropylidenediphthalic anhydride, had six CF3 groups in a repeated segment, so it exhibited the lightest color among the four series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 922–938, 2003  相似文献   

9.
Two kinds of polyimides containing fluorine were synthesized based on dianhydride of 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and diamines including 2,2‐bis[4‐(4‐aminophenoxy)phenyl] hexafluoropropane (BDAF) and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) using solution condensation and following chemical imidization. The structures of 6FDA‐BDAF and 6FDA‐BAPP were characterized by FT‐IR, NMR, and XRD. Their glass transition temperatures characterized by DSC were in the range of 235–251°C, and the initial decomposition temperatures determined by TGA were over 540°C. The membranes of polyimide thus obtained were employed in pervaporation separation of aromatic/aliphatic mixtures. 6FDA‐BDAF membranes obtained better separation performances than 6FDA‐BAPP and had a flux of 0.66 kg · µm/m2 · h and separation factor of 6.49 for toluene/n‐heptane (20/80 wt.%) at 80°C. The effects of the fluorine group on polyimides properties and separation performances were investigated.  相似文献   

10.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

11.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

12.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

13.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A novel diamine, bis(3‐aminophenyl)‐4‐(1‐adamantyl)phenoxyphenyl phosphine oxide (mDAATPPO), was synthesized via the Williamson ether reaction of 4‐(1‐adamantyl)phenol and bis(3‐nitrophenyl)‐4‐fluorophenyl phosphine oxide, followed by reduction. The phenol group was prepared by the Friedel–Crafts reaction of 1‐bromoadamantane and phenol, whereas the phosphine oxide group was synthesized by the Grignard reaction of 1‐bromo‐4‐fluorobezene and diphenyl phosphinic chloride, followed by nitration. The monomer and its intermediate compounds were characterized with Fourier transform infrared, NMR, and melting‐point apparatus. The monomer was then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic dianhydride, and pyromellitic dianhydride by the conventional two‐step synthesis: the preparation of poly(amic acid) followed by solution imidization. The molecular weights of the polyimides were controlled to 20,000 g/mol by off‐stoichiometry, and the synthesized polyimides were characterized with Fourier transform infrared, NMR, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. In addition, the solubility, intrinsic viscosity, dielectric constant, and birefringence of the polyimides were evaluated. Novel polyimides with mDAATPPO exhibited good solubility, high glass‐transition temperatures (290–330 °C), excellent thermal stability (>500 °C), low dielectric constants (2.77–3.01), low refractive indices, and low birefringence values (0.0019–0.0030). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2567–2578, 2006  相似文献   

15.
A diamine monomer II , 2,5‐bis(4‐aminophenoxy)biphenyl, was prepared through a nucleophilic substitution reaction of phenylhydroquinone and p‐chloronitrobenzene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. A series of all‐aromatic, organosoluble polyimides bearing pendent phenyl groups were synthesized from the diamine with six kinds of commercial dianhydrides via a conventional two‐stage process. For improving solubility of polypyromellitimide, copolypyromellitimides with arbitrary solubilities were prepared from II and a pair of dianhydrides, which were mixed at certain molar ratios. These polymers showed good solubilities in N‐methyl‐2‐pyrrolidone and m‐cresol. The softening temperatures of these polyimides were recorded between 206 and 269 °C. Polymers had glass‐transition temperatures at 230–286 °C and 10% weight‐loss temperatures above 521 °C in air or nitrogen atmospheres. Their films had high tensile moduli and strengths. Excellent properties of these polyimides are attributed to the incorporation of the pendent phenyl group in diamine II . © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 429–438, 2002; DOI 10.1002/pola.10116  相似文献   

16.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

17.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

18.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

19.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

20.
A new diamine monomer, 4,4″‐bis(aminophenoxy)‐3,3″‐trifluoromethyl terphenyl (ATFT) was synthesized that led to a number of novel fluorinated polyimides by solution as well as thermal imidization routes when reacted with different commercially available dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), or 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane (6FDA). The polyimides ATFT/BTDA and ATFT/6FDA derived from both routes were soluble in several organic solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, and dimethyl sulfoxide. The polyimide ATFT/PMDA was only soluble in N‐methylpyrollidone. The polyimide films had low water absorption of 0.3–0.7%, low dielectric constants of 2.72–3.3 at 1 Hz, refractive indices of 1.594–1.647 at 589.3 nm, and optical transparency >85%. These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 532 °C in air and good isothermal stability; only 7% weight loss occurred at 400 °C after 7 h, and less than 0.6% weight loss was observed at 315 °C for 5 h. Transparent thin films of these polyimides exhibited tensile strengths up to 112 MPa, a modulus of elasticity up to 3.05 GPa, and elongation at break up to 21% depending on the repeating unit structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1016–1027, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号