首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fluorinated aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,5‐ditrifluoromethylphenyl)‐2,2,2‐trifluoroethane (9FMA), was synthesized by the coupling reaction of 3′,5′‐ditrifluoromethyl‐2,2,2‐trifluoroacetophenone with 2,6‐dimethylaniline under the catalysis of 2,6‐dimethylaniline hydrochloride. A series of fluorinated aromatic polyimides were synthesized from 9FMA and various aromatic dianhydrides, including pyromellitic dianhydride, 3,3′4,4′‐biphenyl tetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature, one‐stage imidization process. The inherent viscosities of the polyimides ranged from 0.37 to 0.74 dL/g. All the polyimides were quickly soluble in many low‐boiling‐point organic solvents such as tetrahydrofuran, chloroform, and acetone as well as some polar organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, and N,N′‐dimethylformamide. Freestanding fluorinated polyimide films could be prepared and exhibited good thermal stability with glass‐transition temperatures of 298–334 °C and outstanding mechanical properties with tensile strengths of 69–102 MPa and elongations at break of 3.3–9.9%. Moreover, the polyimide films possessed low dielectric constants of 2.70–3.09 and low moisture absorption (<0.58%). The films also exhibited good optical transparency with a cutoff wavelength of 303–351 nm. One polyimide (9FMA/BTDA) also exhibited an intrinsic negative photosensitivity, and a fine pattern could be obtained with a resolution of 5 μm after exposure at the i‐line (365‐nm) wavelength. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2665–2674, 2006  相似文献   

2.
A novel aromatic diamine monomer bearing tertbutyl and 4‐tertbutylphenyl groups, 3,3′‐ditertbutyl‐4,4′‐diaminodiphenyl‐4′′‐tertbutylphenylmethane (TADBP), was prepared and characterized. A series of non‐coplanar polyimides (PIs) were synthesized via a conventional one‐step polycondensation from TADBP and various aromatic dianhydrides including pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (OPDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 4,4′‐(hexafluoroisopropylidene)dipthalic anhydride (6FDA). All PIs exhibit excellent solubility in common organic solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), chloroform (CHCl3), tetrahydrofuran (THF), and so on. Furthermore, the obtained transparent, strong and flexible polyimide films present good thermal stability and outstanding optical properties. Their glass transition temperatures (Tgs) are in the range of 298 to 347°C, and 10% weight loss temperatures are in excess of 490°C with more than 53% char yield at 800°C in nitrogen. All the polyimides can be cast into transparent and flexible films with tensile strength of 80.5–101 MPa, elongation at break of 8.4%–10.5%, and Young's modulus of 2.3–2.8 GPa. Meanwhile, the PIs show the cutoff wavelengths of 302–356 nm, as well as low moisture absorption (0.30% –0.55%) and low dielectric constant (2.78–3.12 at 1 MHz).  相似文献   

3.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

4.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

5.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

6.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

7.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   

8.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

9.
A series of hyperbranched polyimides (HBPIs) were synthesized by reacting a triamine monomer N ,N ′,N ″‐tris(4‐methoxyphenyl)‐N ,N ′,N ″‐tris(4‐phenylamino)?1,3,5‐benzenetriamine with various dianhydrides such as oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA). The hyperbranched polyimide (6FHBPI) using 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as dianhydride monomer was also added into the discussion. All the hyperbranched polyimides exhibited excellent organo‐solubility and high thermal stability. Memory devices with a sandwiched structure of indium tin oxide (ITO)/HBPI/Al were constructed by using these HBPIs as the active layers. All these HBPIs based memory devices exhibited favorable memory performances, with switching voltages between ?1.3 V and ?2.5 V, ON/OFF current ratios up to 107 and retention times long to 104 s. Tunable memory characteristics from electrical insulator to volatile memory, and then to nonvolatile memory were obtained by adjusting the electron acceptors of these HBPIs. Molecular simulation results suggested that the electron affinity and the dipole moment of these HBPIs were responsible for the conversion of the memory characteristics. With the electron affinity and dipole moment of these HBPIs increasing, the memory characteristics turned from volatile to nonvolatile. The present study suggested that tunable memory performance could be achieved through adjusting the acceptor moieties of the hyperbranched polyimides. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2281–2288  相似文献   

10.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

11.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

12.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

13.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

14.
A new unsymmetrical diamine, 2‐(3‐aminophenoxy)‐6‐(4‐aminophenoxy)benzonitrile (3,4‐APBN), is synthesized via two consecutive SNAr reactions and the temperature‐dependent reactivity of the fluorides in 2,6‐difluorobenzonitrile, whose first SNAr reaction occurs at 70 °C and second, at 100 °C, allowing timing control of reaction sequence and circumventing the transetherification side reaction. Thus, a series of polyimides (PIs) is prepared from the polymerization of 3,4‐APBN with five common dianhydrides (6FDA, DSDA, OPDA, BTDA, and PMDA). For comparison, a second series is also prepared from two symmetrical diamines ([2,6‐bis(3‐aminophenoxy)benzonitrile (3,3‐APBN) and 2,6‐bis(4‐aminophenoxy)benzonitrile (4,4‐APBN)] and 6FDA or PMDA. The processability of the poly(amic acids) (PAAs), for the first series is greatly improved since their solution viscosities are much lower than PAAs based on symmetrical diamines. Besides having high glass‐transition temperatures (249–332 °C), and thermal stability [5% weight loss in the range of 505–542 °C (air) and 512–546 °C (nitrogen)], these PIs form tough, transparent and flexible films that have a tensile‐strength range of 82.1–121.3 MPa, elongations‐at‐break of 5.33–9.81%, and tensile moduli of 2.11–2.97 GPa. Their film dielectric constants are 3.08–3.62 at 10 kHz, moderately higher than that (2.92) of analogous PI (CP2) without nitrile groups. Overall, we found that the reduction of structural symmetry in repeat units can improve the polymer processibility as well as increasing their dielectric constants. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4998–5011  相似文献   

15.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

16.
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002  相似文献   

17.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A new diamine containing isopropylidene, methyl substituted arylene ether, and trifluoromethyl groups, 2,2‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)‐3,5‐dimethylphenyl]propane (BTADP), was synthesized and used in preparation of a series of polyimides by direct polycondensation with various aromatic tetracarboxylic dianhydrides in N, N‐dimethylacetamide (DMAc). All polymers derived from diamine (BTADP) with trifluoromethyl substituents were highly organosoluble in the solvents, like N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide, N,N‐dimethylformamide (DMF), pyridine, chloroform, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dichloromethane, cyclohexanone, and γ‐butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polyimides were found to range between 0.58 and 0.97 dL·g?1. These polyimides had glass transition temperatures between 256 and 307 °C, and their 10% mass loss temperatures ranged from 440 to 462 °C and 421 to 443 °C under nitrogen and air, respectively. These polyimides had low dielectric constants in the range of 2.84–3.09. All the polyimides could be cast into films from DMAc solutions and were thermally converted into color lightness, optically transparent, flexible, and tough polyimides. The polyimide films had a tensile strength in the range of 83–97 MPa and a tensile modulus in the range of 2.0–2.2 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5766–5774, 2004  相似文献   

19.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

20.
A novel fluorinated diamine monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,5‐di‐tert‐butylbenzene ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,5‐di‐tert‐butylhydroquinone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Fluorinated polyimides ( 5a – 5f ) were synthesized from diamine 2 and various aromatic dianhydrides ( 3a – 3f ) via thermal or chemical imidization. These polymers had inherent viscosities of 0.77–1.01 dL/g. The 5 series polyimides were soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and N,N‐dimethylformamide and were even soluble in dioxane, tetrahydrofuran, and dichloromethane. 5 (C) showed cutoff wavelengths between 363 and 404 nm and yellowness index (b*) values of 6.5–40.2. The polyimide films had tensile strengths of 93–114 MPa, elongations to break of 9–12%, and initial moduli of 1.7–2.1 GPa. The glass‐transition temperatures were 255–288 °C. The temperatures of 10% weight loss were all above 460 °C in air or nitrogen atmospheres. In comparison with a nonfluorinated polyimide series based on 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene, the 5 series showed better solubility and lower color intensity, dielectric constants, and moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2272–2284, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号