首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gaining external control over self‐organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self‐assembly is dictated by microphase separation, the hydrophobic effect, and head‐group repulsion. It is desirable to supplement surfactants with an added mode of long‐range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition‐metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure‐directing agents enabled the formation of porous solids with 12‐fold rotational symmetry.  相似文献   

2.
We have considered a semi-dense dispersion composed of ferromagnetic rodlike particles with a magnetic moment normal to the particle axis to investigate the rheological properties and particle orientational distribution in a simple shear flow as well as an external magnetic field. We have adopted the mean field approximation to take into account magnetic particle-particle interactions. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the magnetic moment of the rodlike particle is strongly restricted in the field direction, so that the particle points to directions normal to the flow direction (and also to the magnetic field direction). This characteristic of the particle orientational distribution is also valid for the case of a strong particle-particle interaction, as in the strong magnetic field case. To the contrary, for a weak interaction among particles, the particle orientational distribution is governed by a shear flow as well as an applied magnetic field. When the magnetic particle-particle interaction is strong under circumstances of an applied magnetic field, the magnetic moment has a tendency to incline to the magnetic field direction more strongly. This leads to the characteristic that the viscosity decreases with decreasing the distance between particles, and this tendency becomes more significant for a stronger particle-particle interaction. These characteristics concerning the viscosity are quite different from those for a semi-dense dispersion composed of rodlike particles with a magnetic moment along the particle direction.  相似文献   

3.
The aggregation properties of single-chain surfactants bearing one (H1), two (H2), and three (H3) trimethylammonium head groups have been studied by small-angle neutron scattering (SANS). Growth of aggregates was observed to decrease dramatically with an increase in the number of head groups in the surfactants. The micelles grow progressively smaller with every increase in the number of head groups of the surfactants. Aggregation number (N) continuously decreases and the fractional charge (alpha) gradually increases with the increase in the number of head groups. The semiminor axis (a) and semimajor axis (b=c) of the micelle decrease strongly with the increase in the number of head groups. In the case of H1, dramatic micellar growth is observed on addition of salts such as KBr and sodium salicylate, but this type of micellar growth is not observed in the cases of H2 and H3 when the above salts are added to their micellar solutions. Aggregation number and size of the micelles remain almost the same, even after addition of KBr at a concentration as high as 100 mM. This observation with multiheaded cationic surfactants is unusual. Clearly, the charge density at the head group level of surfactants markedly influences their micellar aggregation properties.  相似文献   

4.
In this study, we estimated the structural parameters of water/mixed nonionic surfactants/R (+)-limonene microemulsions. The mixed surfactants are sucrose laurate and ethoxylated mono-di-glyceride. U-type microemulsion region was observed in these systems. It was found that changes in the surfactants mixing ratio, surfactants contents and oil/water weight ratio in the microemulsions incite a considerable change in the aggregation number, core radius and interfacial area per mixed surfactants head groups in the formed microemulsions. The interfacial area per mixed surfactant head groups increases while the aggregation number decreases with the increase in the ethoxylated mono-di-glyceride mass fraction in the mixed surfactants. The For an oil/water weight content equals unity, the interfacial area per mixed surfactants head groups is constant for mixed surfactants contents below 35 wt%. For mixed surfactants contents above 35 wt% the interfacial area per mixed surfactants head groups decrease and stabilizes at the lower value. The aggregation number decreases with the increase in the mixed surfactants contents. The aggregation number decreases also with the increase in the oil/water weight ratio at fixed mixed surfactants content.  相似文献   

5.
We have investigated the influences of the magnetic field strength, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. This dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment normal to the particle axis. In the present analysis, these spheroidal particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the rodlike particle is significantly restricted in the field direction, so that the particle points to a direction normal to the flow direction (and also to the magnetic field direction). However, the present particle does not exhibit a strong directional characteristic, which is one of the typical properties for the previous particle with a magnetic moment parallel to the particle axis. That is, the particle can rotate around the axis of the magnetic moment, although the magnetic moment nearly points to the field direction. The viscosity significantly increases with the field strength, as in the previous particle model. The particle of a larger aspect ratio leads to the larger increase in the viscosity, since such elongated particles induce larger resistance in a flow field. The diffusion coefficient under circumstances of an applied magnetic field is in reasonable agreement between theoretical and experimental results.  相似文献   

6.
Surface tension and isothermal titration calorimetry (ITC) were used to determine the critical micelle concentration (cmc) of the zwitterionic amidosulfobetaine surfactants ASB-14 and ASB-16 (linear-alkylamidopropyldimethylammoniopropanosulfonates) at 25 °C. The cmc and the heat of micellization were determined from 15 to 75 °C by ITC for both surfactants. The increase in temperature caused significant changes in the enthalpy and in the entropy of micellization, with small changes in the standard Gibbs energy (ΔG(mic)), which is consistent to an enthalpy?entropy compensation with a compensatory temperature of 311 K (ASB-14) and 314 K (ASB-16). In the studied temperature range, the heat capacity of micellization (ΔC(p)(mic)) was essentially constant. The experimental ΔC(p)(mic) was lower than that expected if only hydrophobic interactions were considered, suggesting that polar interactions at the head groups are of significant importance in the thermodynamics of micelle formation by these surfactants. Indeed, a NMR NOESY spectrum showed NOEs that are improbable to occur within the same monomer, resulting from interactions at the polar head groups involving more than one monomer. The ITC and NMR results indicate a tilt in the polar headgroup favoring the polar interactions. We have also observed COSY correlations typical of dipolar interactions that could be recovered with the partial alignment of the molecule in solution, which results in an anisotropic tumbling. The anisotropy suggested an ellipsoidal shape of the micelles, which results in a positive magnetic susceptibility, and ultimately in orientation induced by the magnetic field. Such an ellipsoidal shape was confirmed from results obtained by SAXS experiments that revealed aggregation numbers of 108 and 168 for ASB-14 and ASB-16 micelles, respectively. This study characterizes an interesting micelle system that can be used in the study of membrane proteins by solution NMR spectroscopy.  相似文献   

7.
The density functional theory of inhomogeneous simple fluids is extended to an Ising magnetic fluid in contact with a solid surface, which is subjected to an external uniform or nonuniform magnetic field. The system is described by two coupled integral equations regarding the magnetic moment and fluid density distributions. The dependence of the contact angle that a nanodrop makes with the solid surface on the parameters involved in the magnetic interactions between the molecules of fluid and between the molecules of fluid and an external magnetic field is calculated. For the uniform magnetic field, the contact angle increases with increasing magnetic field, approaching an asymptotic value that depends on the strength of the fluid-fluid magnetic interactions. In the nonuniform field generated by a permanent magnet, the contact angle first increases with increasing magnetic field B(M) and then decreases, with the decrease being almost linear for large values of B(M). The obtained results are in qualitative agreement with the experimental data on the contact angle of magnetic drops on a solid surface available in the literature.  相似文献   

8.
The magnetic properties of 10 nm diameter surfactant-coated cobalt (Co) nanoparticles in 1,2-dichlorobenzene (DCB) are investigated by a series of sequential magnetic moment (m) vs temperature (T) measurements. A rapid rise in magnetic moment around 250 K during warming and an abrupt drop at 234 K during cooling are observed when a nonsaturating external magnetic field is applied. Differential scanning calorimetry (DSC) measurements demonstrate that the rapid rise and abrupt drop in magnetization are associated with the melting and freezing of the solvent. Magnetic measurements of these Co nanoparticles in DCB are also used to probe their aging over a period of 70 days. The saturation magnetic moment of Co nanoparticles in DCB stored in air at room temperature decreases by nearly 40% over 70 days. Transmission electron microscopy (TEM) characterizations are reported to show the time evolution in the size, shape, and crystalline structures of DCB-immersed nanoparticles.  相似文献   

9.
Traveling wave magnetophoresis for high resolution chip based separations   总被引:1,自引:0,他引:1  
Yellen BB  Erb RM  Son HS  Hewlin R  Shang H  Lee GU 《Lab on a chip》2007,7(12):1681-1688
A new mode of magnetophoresis is described that is capable of separating micron-sized superparamagnetic beads from complex mixtures with high sensitivity to their size and magnetic moment. This separation technique employs a translating periodic potential energy landscape to transport magnetic beads horizontally across a substrate. The potential energy landscape is created by superimposing an external, rotating magnetic field on top of the local fixed magnetic field distribution near a periodic arrangement of micro-magnets. At low driving frequencies of the external field rotation, the beads become locked into the potential energy landscape and move at the same velocity as the traveling magnetic field wave. At frequencies above a critical threshold, defined by the bead's hydrodynamic drag and magnetic moment, the motion of a specific population of magnetic beads becomes uncoupled from the potential energy landscape and its magnetophoretic mobility is dramatically reduced. By exploiting this frequency dependence, highly efficient separation of magnetic beads has been achieved, based on fractional differences in bead diameter and/or their specific attachment to two microorganisms, i.e., B. globigii and S. cerevisiae.  相似文献   

10.
The retardation effect of oxygen and external magnetic field on the yield of radicals in hydroperoxide decomposition in catalytic nanoreactors was discovered. Mixed reverse micelles formed by the cationic surfactants (Surf) and hydroperoxide {mLOOH...nSurf} play the role of nanoreactors. Similar effects of oxygen and external magnetic field (60–150 mT) on the yield of radicals are observed in the catalytic decomposition of hydroperoxide in the presence of acetylcholine. It is noteworthy that the retardation effect of the magnetic field decreases in the presence of paramagnetic particles such as oxygen and relatively stable radicals.  相似文献   

11.
The spontaneous formation of vesicles by six amino acid‐based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head‐group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self‐aggregation, both aliphatic and aromatic side‐chain‐substituted amino acid‐based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature‐dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan‐ and tyrosine‐based surfactants have the ability to reduce HAuCl4 to gold nanoparticles (GNPs), which is utilized to obtain in‐situ‐synthesized GNPs entrapped in vesicles without the need for any external reducing agent.  相似文献   

12.
Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is attractive because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice‐versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra‐small dimensions (25 nm) have been prepared by spatial control over the thiol‐yne click modification of organosilica‐magnetite core–shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<1 T) magnetic field.  相似文献   

13.
Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is attractive because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice-versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra-small dimensions (25 nm) have been prepared by spatial control over the thiol-yne click modification of organosilica-magnetite core–shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<1 T) magnetic field.  相似文献   

14.
We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.  相似文献   

15.
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.  相似文献   

16.
Tailoring the surface of nanoparticles is essential for biological applications of magnetic nanoparticles. FePt nanoparticles are interesting candidates owing to their high magnetic moment. Established procedures to make FePt nanoparticles use oleic acid and oleylamine as the surfactants, which make them dispersed in nonpolar solvents such as hexane. As a model study to demonstrate the modification of the surface chemistry, stable aqueous dispersions of FePt nanoparticles were synthesized after ligand exchange with mercaptoalkanoic acids. This report focuses on understanding the surface chemistry of FePt upon ligand exchange with mercapto compounds by conducting X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies. It was found that the mercapto end displaces oleylamine on the Pt atoms and the carboxylic acid end displaces the oleic acid on the Fe atoms, thus exposing carboxylate and thiolate groups on the surface that provide the necessary electrostatic repulsion to form stable aqueous dispersions of FePt nanoparticles.  相似文献   

17.
Stimuli-responsive liquid foams and bubbles are systems for which the stability, structure, shape, and movement can be controlled by the application of stimuli. The foam stability can be modified by a stimulus which can change solution condition (pH, temperature, and ionic strength) or with the application of an external field (light and magnetic). Different foam stabilizers have been described in the literature to design these responsive foams systems ranging from surfactants, peptides, polymers, soft polymer particles, surfactants self-assembly, crystalline particles, emulsion droplets, and solid particles. This review aims to cover the recent advances of the design of stimuli-responsive liquid foams and their applications. Responsive liquid foams are attractive in textile coloring process, biomedical application, washing, and material recovery processes.  相似文献   

18.
Iqbal R  Rizvi SA  Shamsi SA 《Electrophoresis》2005,26(21):4127-4137
The monomers and polymers of four anionic amide type sodium undecenoxy carbonyl glycinate (SUCG) surfactants and four anionic carbamate type sodium undecenoyl glycinate (SUG) surfactants with 1-, 2-, 3-, and 4-glycine unit as head group were synthesized and characterized. The CMC and aggregation number (A) for all eight surfactants were determined using fluorescence spectroscopy. In addition, the CMC values of these surfactants were also projected by surface tension and CE. The CMC of the monomers decreases with increases in the size of glycine head groups and correlates well when the fluorescence method was compared to CE. The A number increases and partial specific volume (V) decreases with increase in size of the head group of both monomers and polymers. However, A and V are always lower for the polymers than the corresponding monomers. The electrophoretic and chromatographic parameters of micelle polymers of SUG and SUCG were also examined. The coefficient of EOF increases with the increase in size of the head group but the electrophoretic mobility decreases which results in a decrease in the elution range. The retention data suggest that the selectivity differences among the mono-, di-, and tripeptide derivatives of poly-SUCG surfactants are relatively higher compared to the derivatives of poly-SUG series.  相似文献   

19.
Carbohydrates are an attractive class of starting materials for organic syntheses because they are of natural origin, environmentally friendly, and highly functionalized, in this way promoting a sustainable chemistry. A somewhat exotic but nevertheless readily available family of carbohydrates allowing a fascinating chemistry are inositols (cyclohexane-1,2,3,4,5,6-hexols), which we currently use for the synthesis of new surfactants. In our previous work, we reported on the synthesis of a number of new regiochemically defined myo-inositol ethers and esters and studied their surface activity in aqueous solution as well as their ability to form thermotropic liquid crystals. It turned out that the hydrophilicity of the myo-inositol head group alone does not ensure sufficient water solubility of these surfactants. To improve the water solubility, we increased the inositol head group by the introduction of a tri(ethylene oxide) unit. The resulting surfactant is the first representative of a new class of inositol-based surfactants (CiEjIk) that combine the properties of classical sugar surfactants (CnGm) and oligo(ethylene oxide) alkyl ether surfactants (CiEj).  相似文献   

20.
Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号