首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
《Solid State Sciences》2007,9(8):699-705
Scandium transition metal carbides having the formula Sc3TC4 (T = Co, Ni, Ru, Rh, Os, Ir) have been structurally characterized by solid state 13C and 45Sc nuclear magnetic resonance spectroscopy. In all the compounds investigated, well-resolved signals are observed for crystallographically distinct carbon and scandium sites, confirming the formation of superstructures in the Rh and Ir compounds at ambient temperature. 45Sc NMR spectra are dominated by anisotropic broadening due to second-order quadrupolar perturbations. The nuclear electric quadrupolar coupling parameters (the coupling constant CQ and the asymmetry parameter η) are generally found in good agreement with values calculated theoretically from the crystal structure using the WIEN2k program. Furthermore, the spectra reveal large isotropic resonance shift differences between inequivalent Sc sites in a given compound and between sites of the same type for different compounds. Altogether the results illustrate that 45Sc NMR is a sensitive method for detecting isotropic and anisotropic local electron density variations in the Sc3TC4 family.  相似文献   

2.
A series of scandium compounds, namely ScPO4, ScOF, Li3Sc(BO3)2, and CaSc2O4, were prepared according to procedures described in the literature, and then characterised by powder X-ray diffraction and solid-state 45Sc-NMR spectroscopy. By computer fitting, the quadrupolar interaction parameters χ and η, as well as the isotropic chemical shifts δiso were extracted from the NMR spectra. For comparison and site assignment of 45Sc, density functional theory (DFT) calculations of the EFG tensor were carried out with the Castep code. For the compounds with a well-defined formal coordination number (CN), a convincing linear correlation between CN and isotropic chemical shift could be established.  相似文献   

3.
Multinuclear (31P and 79/81Br), multifield (9.4, 11.75, and 21.1 T) solid‐state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single‐crystal X‐ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh4, because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non‐standard nuclei can correct or improve X‐ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, 79/81Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. 35/37Cl solid‐state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge‐including projector‐augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ11, on the shortest Br? P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey’s theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as 79/81Br, can afford insights into structure and bonding environments in the solid state.  相似文献   

4.
Multinuclear solid‐state NMR studies of Cp*2Sc−R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc−Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc−R bond is different in Cp*2Sc−Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc−CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   

5.
The 4A22E transition of potassium chromicyanide has been studied under magnetic field. It has been found that the g-value is nearly isotropic, quite unlike the case of ruby. An attempt has been made to explain the zero-field splittings of 2E, 2T1 and 2T2 states and the g-value of the 2E state on the assumption that the distant ions are mainly responsible for lowering of symmetry of the crystal field from Oh. A reasonable choice of parameters can make the calculated values agree with the observed ones.  相似文献   

6.
The Zintl phases M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4 feature a common structural unit, the Si44– anion. The coordination of the anions by the cations varies significantly. This allows a systematic investigation of the bonding situation of the anions by 29Si NMR spectroscopy. The compounds were characterized by powder X‐ray diffraction, differential thermal analysis, magnetic susceptibility measurements, 23Na, 29Si, 87Rb, 133Cs NMR spectroscopy, and quantum mechanical calculation of the NMR coupling parameter. The chemical bonding was investigated by quantum mechanical calculations of the electron localizability indicator (ELI). Synthesis of the compounds results for all of them in single phase material. A systematic increase of the isotropic 29Si NMR signal shift with increasing atomic number of the cations is observed by NMR experiments and quantum mechanical calculation of the NMR coupling parameter. The agreement of experimental and theoretical results is very good allowing an unambiguous assignment of the NMR signals to the atomic sites. Quantum mechanical modelling of the NMR shift parameter indicates a dominant influence of the cations on the isotropic 29Si NMR signal shift. In contrast to this a negligible influence of the geometry of the anions on the NMR signal shift is obtained by these model calculations. The origin of the systematic variation of the isotropic NMR signal shift is not yet clear although an influence of the charge transfer estimated by calculation using the QTAIM approach is indicated.  相似文献   

7.
Multinuclear solid‐state NMR studies of Cp*2Sc?R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc?Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc?R bond is different in Cp*2Sc?Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc?CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   

8.
SCF MO calculations at the 6-31G** level of approximation are reported for 2H and 14N electric field gradients in HCN?HCN, HCN?HF, and CH3CN?HF dimers, with emphasis on the configurational dependence of these quantities in (HCN)2. In comparison with available experimental nuclear quadrupolar coupling constants, the calculated values for the monomers and dimers exhibit an accuracy of ≈ 10%, which is comparable to that of other spectroscopic parameters. The implications of hydrogen bonding for quadrupolar spin-lattice relaxation rates are briefly discussed.  相似文献   

9.
The 87Rb and 133Cs spin-lattice relaxation rates of RbCdCl3 and CsCdCl3 single crystals grown using the slow evaporation method were measured over the temperature range 160-400 K. The changes in the 87Rb spin-lattice relaxation rate near 340, 363, and 395 K correspond to phase transitions of the RbCdCl3 crystal. The jump in T1−1 at 395 K is due to a shortening in the c-direction as a result of a phase transition from a cubic to a tetragonal structure. We suggest that the cubic Rb environment is favored above 395 K due to the fast motions and soft modes, which cause relaxation and average out the quadrupolar splittings. The temperature dependence of the relaxation rate below 340 K in RbCdCl3 can be represented by and is thus in accordance with a Raman process. The 133Cs nuclei in the CsCdCl3 crystal produce only one resonance line, which indicates that the local structure around the Cs atoms is cubic. The temperature dependence of the relaxation rate of the Cs nuclei can also be described with the quadratic equation . In the case of the RbCdCl3 and CsCdCl3 crystals, which are of electric quadrupolar type, their relaxations proceed via Raman processes, whereas in RbMnCl3 and CsMnCl3 crystals, which are of magnetic relaxation type, the relaxations proceed via single phonon processes. Therefore, the relaxation mechanisms of these different types of ABCl3 crystals (quadrupolar and magnetic) are completely different NMR behavior.  相似文献   

10.
1H, 13C and 29Si NMR data for the compounds VixSiX4?x are reported. While the 1H and 13C resonances from the π system are indicative of the electron-withdrawing inductive effect (-I) of the halogens, the 29Si chemical shift data reveal not only a shift contribution originating from this inductive effect but also the important influence of a {d, σ*-π} hyperconjugation [1]. This back-donation originates from the vinyl π system and not from the halogens. The chemical shift data and the coupling constants also show an important influence from steric interaction and even from an electric field effect caused by polarization of the silicon—halogen bond.  相似文献   

11.
The solid solutions of ScBRh3-ScRh3 and CeBRh3-CeRh3 are synthesized by the arc melting method, where RBRh3 and RRh3 (R=rare earth element) have perovskite and AuCu3 type structures, respectively. The binding energy of Sc 2p3/2 for ScBxRh3 increases with the boron concentration. The Knight shift of 45Sc observed by nuclear magnetic resonance spectroscopy decreases with increase of boron concentration. The decrement of the Knight shift corresponds the Sc 4s electron density at the Fermi level. The intensity ratio of f2f1f0 of Ce 3d XPS spectrum changes with boron concentration of CeBxRh3. It is concluded that in both cases of ScBxRh3 and CeBxRh3 the charge on the atoms on A-site changes with the concentration of the atoms on B-site, where the atoms are not directly bound.  相似文献   

12.
The 43Ca nuclear magnetic resonance is measured in the normal state of the high temperature superconductor (CaxLa1–x)(Ba1.75–xLa0.25+x)Cu3Oy as a function of temperature. The samples are chosen in order to compare the effect of changing the calcium and the oxygen contents in the underdoped regime. We determine the quadrupolar parameters and the Knight shift (KS). The macroscopic magnetic susceptibility is measured and used to estimate the 43Ca hyperfine field. The variation of KS when increasing the calcium content does not show the signature of an increase of the doping level, contrary to what is suggested by the variation of macroscopic properties.  相似文献   

13.
Four new MPtAl2 (M=Ca, Sr, Ba, Eu) compounds, adopting the orthorhombic MgCuAl2-type structure, have been synthesized from the elements using tantalum ampoules. All compounds are obtained as platelet-shaped crystallites and exhibit an increasing moisture sensitivity with increasing size of the formal M cation. Structural investigations indicate a pronounced elongation of the crystallographic b-axis, which results in a significant distortion of the [PtAl2]δ polyanion. Within the polyanion, layer-like arrangements can be found with bonding Pt−Al interactions within the slab; the increase of the b-axis can be attributed to increasing Al−Al distances and therefore decreasing interactions between the slabs, caused by the differently-sized formal M cations. While the alkaline earth (M=Ca, Sr) representatives exhibit Pauli paramagnetism, BaPtAl2 shows diamagnetic behavior, finally EuPtAl2 is ferromagnetic with TC=54.0(5) K. The effective magnetic moment indicates that the Eu atoms are in a divalent oxidation state, which is confirmed by 151Eu Mössbauer spectroscopic investigations. Measurements below the Curie-temperature show a full magnetic hyperfine field splitting with Bhf=21.7(1) T. 27Al and 195Pt magic-angle spinning NMR spectroscopy corroborates the presence of single crystallographic sites for the Pt and Al atoms. The large 27Al nuclear electric quadrupolar coupling constants confirm unusually strong electric field gradients, in agreement with the structural distortions and the respective theoretical calculations. X-ray photoelectron spectroscopy has been utilized to investigate the charge transfer within the polyanion. The Pt 4f binding energy decreases with decreasing electronegativity / ionization energy of the alkaline earth elements, suggesting an increasing electron density at the Pt atoms. Theoretical investigations underline the platinide character of the investigated compounds by Bader charge calculations. The analysis of the integrated crystal orbital Hamilton population (ICOHP) values, electron localization function (ELF) and isosurface analyses lead to a consistent structural picture, indicating stable layer-like arrangements of the [PtAl2]δ polyanion.  相似文献   

14.
The first comprehensive solid-state nuclear magnetic resonance (NMR) characterization of geminal alane-phosphane frustrated Lewis pairs (Al/P FLPs) is reported. Their relevant NMR parameters (isotropic chemical shifts, direct and indirect 27Al-31P spin-spin coupling constants, and 27Al nuclear electric quadrupole coupling tensor components) have been determined by numerical analysis of the experimental NMR line shapes and compared with values computed from the known crystal structures by using density functional theory (DFT) methods. Our work demonstrates that the 31P NMR chemical shifts for the studied Al/P FLPs are very sensitive to slight structural inequivalences. The 27Al NMR central transition signals are spread out over a broad frequency range (>200 kHz), owing to the presence of strong nuclear electric quadrupolar interactions that can be well-reproduced by the static 27Al wideband uniform rate smooth truncation (WURST) Carr-Purcell-Meiboom-Gill (WCPMG) NMR experiment. 27Al chemical shifts and quadrupole tensor components offer a facile and clear distinction between three- and four-coordinate aluminum environments. For measuring internuclear Al⋅⋅⋅P distances a new resonance-echo saturation-pulse double-resonance (RESPDOR) experiment was developed by using efficient saturation via frequency-swept WURST pulses. The successful implementation of this widely applicable technique indicates that internuclear Al⋅⋅⋅P distances in these compounds can be measured within a precision of ±0.1 Å.  相似文献   

15.
Phase behavior of ternary systems containing 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium bromide (R12TAB), benzyl alcohol and water have been studied at 25±0.1°C. Ternary phase diagram of the systems shows a clear, isotropic, and low‐viscous region, a L phase, two liquid crystalline phases (lamella and hexagonal liquid crystal), and a coexisted phase of the liquid crystalline and micelles. 2H nuclear magnetic resonance (2H NMR) technology and polarizing‐light microscope were employed to confirm the symmetry structure of the liquid crystals and the boundaries for the different phases. In L phase, three types of different micelle regions (reverse micelles, normal micelles, and bicontinuous structures zones) were confirmed by means of the electric conductivity and the proton nuclear magnetic resonance spectroscopy (1H NMR) measurements. The microcosmic structures of the micelle were investigated, and the solubilizing position of benzyl alcohol were located according to the chemical shift of protons.  相似文献   

16.
Lanthanum‐139 NMR spectra of stationary samples of several solid LaIII coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical‐shift anisotropy on the NMR spectra is non‐negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (CQ) range from 10.0 to 35.6 MHz, the spans of the chemical‐shift tensor (Ω) range from 50 to 260 ppm, and the isotropic chemical shifts (δiso) range from ?80 to 178 ppm. In general, there is a correlation between the magnitudes of CQ and Ω, and δiso is shown to depend on the La coordination number. Magnetic‐shielding tensors, calculated by using relativistic zeroth‐order regular approximation density functional theory (ZORA‐DFT) and incorporating scalar only or scalar plus spin–orbit relativistic effects, qualitatively reproduce the experimental chemical‐shift tensors. In general, the inclusion of spin–orbit coupling yields results that are in better agreement with those from the experiment. The magnetic‐shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical‐shift and EFG tensors in the molecular frame. This study demonstrates that solid‐state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

17.
The magnetic hyperfine coupling constants in NO2 and CO2? have been computed by an initio methods. Spin annihilation is found to be essential in order to obtain useful results for the dipolar couplings, but has much less influence on the isotropic couplings. The electric quadrupole coupling constants have also been evaluated, and are in good agreement with available experimental data.  相似文献   

18.
Physical properties of NdPd2Ge2 and NdAg2Ge2, crystallizing with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric, electrical transport as well as by neutron diffraction measurements. The specific heat studies and neutron diffraction measurements were performed down to 0.30 K and 0.47 K, respectively. Both compounds exhibit antiferromagnetic ordering below TN equal to 1.5 K for NdPd2Ge2 and 1.8 K for NdAg2Ge2. Neutron diffraction data for the latter germanide indicate antiferromagnetic collinear structure described by the propagation vector k=(0.5, 0, 0.5). The Nd magnetic moments equal to 2.24(5) μB at 0.47 K are aligned along the a-axis and have the +− sequence within the crystal unit cell. For NdPd2Ge2 only very small Bragg peaks of magnetic origin were observed in the neutron diffraction patterns measured below TN, thus hampering determination of the magnetic structure. Both compounds exhibit metallic-like electrical conduction. From the specific heat data the crystal electric field (CEF) levels schemes were determined. Difference between the overall CEF splitting in the two compounds is correlated with their structural parameters.  相似文献   

19.
Copper(II) compounds {CuCA(phz)(H2O)2}n (H2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H2O)2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm−1 from the T1 value of the range 20−210 K. Comparing this value with that of J = −1.84 cm−1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H2O)2}n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.  相似文献   

20.
We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.

Photoexcitation mechanism of YxSc3−xN@C80 metallofullerenes is studied by variable-temperature photoluminescence, advanced EPR techniques, and DFT calculations, revealing photoinduced rotation of the endohedral cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号