首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanum-139 NMR spectra of stationary samples of several solid La(III) coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical-shift anisotropy on the NMR spectra is non-negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (C(Q)) range from 10.0 to 35.6 MHz, the spans of the chemical-shift tensor (Omega) range from 50 to 260 ppm, and the isotropic chemical shifts (delta(iso)) range from -80 to 178 ppm. In general, there is a correlation between the magnitudes of C(Q) and Omega, and delta(iso) is shown to depend on the La coordination number. Magnetic-shielding tensors, calculated by using relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) and incorporating scalar only or scalar plus spin-orbit relativistic effects, qualitatively reproduce the experimental chemical-shift tensors. In general, the inclusion of spin-orbit coupling yields results that are in better agreement with those from the experiment. The magnetic-shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical-shift and EFG tensors in the molecular frame. This study demonstrates that solid-state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

2.
A series of lead(II) coordination polymers containing [N(CN)2]? (DCA) or [Au(CN)2]? bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)2] ( 1 ), [Pb(terpy)(DCA)2] ( 2 ), [Pb(terpy){Au(CN)2}2] ( 3 ), [Pb(4′‐chloro‐terpy){Au(CN)2}2] ( 4 ) and [Pb(4′‐bromo‐terpy)(μ‐OH2)0.5{Au(CN)2}2] ( 5 )) was spectroscopically examined by solid‐state 207Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone‐pair activity. Two new compounds, 2 and [Pb(4′‐hydroxy‐terpy){Au(CN)2}2] ( 6 ), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)2]? polymers). 207Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δiso=?3090 ppm and Ω=389 ppm for 1 (the least basic) to δiso=?1553 ppm and Ω=2238 ppm for 3 (the most basic)). The trends observed in 207Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb? N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p‐orbital character and show a strong correlation to the 207Pb NMR chemical shift parameters. Preliminary trends suggest that 207Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone‐pair activity.  相似文献   

3.
Solid-state nuclear magnetic resonance (NMR) parameters of 17O, 14N/15N, and 2H/1H nuclei were evaluated in two available neutron crystalline structures of N-methylacetamide (NMA) at 250 and 276 K, NMA-I and NMA-II, respectively. Density functional theory calculations were performed by B3LYP method and 6-311++G** and IGLO-II type basis sets to calculate the electric field gradient (EFG) and chemical shielding (CS) tensors at the sites of mentioned nuclei. In order to investigate hydrogen bonds (HBs) effects on NMR tensors, calculations were performed on four-model systems of NMA: an optimized isolated gas-phase, crystalline monomers, crystalline dimers, and crystalline trimers. Comparing the calculated results reveal the influence of N–H···O=C and C–H···O=C HB types on the NMR tensors which are observable by the evaluated parameters including quadrupole coupling constant, C Q, and isotropic CS, σ iso. Furthermore, the results demonstrate more influence of HB on the EFG and CS tensors of NMA at 276 K rather than that of 250 K.  相似文献   

4.
13C NMR chemical shifts have been calculated for structures of some substituted 3‐anilino‐2‐nitrobenzo‐[b]thiophenes ( 2 o) and 2‐anilino‐3‐nitrobenzo[b]thiophenes ( 3 o) derivatives containing OH, NH2, OMe, Me, Et, H, F, Cl and Br. The molecular structures were fully optimized using B3LYP/6‐31G(d,p). The calculation of the 13C shielding tensors employed the GAUSSIAN 03 implementation of the gauge‐including atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) by using 6‐311++G(d,p) basis set at density functional levels of theories (DFT). The isotropic and the anisotropy parameters of chemical shielding for all compounds are calculated. The predicted 13C chemical shifts are derived from equation δ=δ0+δ where δ is the chemical shift, δ is the absolute shielding, and δ0 is the absolute shielding of the standard TMS. Excellent linear relationships have been observed between experimental and calculated 13C NMR chemical shifts for all derivatives  相似文献   

5.
A variable B0 field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high‐precision measurement of 93Nb NMR interaction parameters such as the isotropic chemical shift (δiso), quadrupole coupling constant and asymmetry parameter (CQ and ηQ), chemical shift span/anisotropy and skew/asymmetry (Ωδ and κ/ηδ) and Euler angles (α, β, γ) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR‐CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from NbV in most oxo environments, this study emphasises that a thorough variable B0 approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (?1/2?+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these 93Nb broadline data. These measurements reveal that the 93Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the NbV positions, with CQ values in the 0 to >80 MHz range being measured; similarly, the δiso (covering an approximately 250 ppm range) and Ω values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb? O bond angles and distances defining the immediate NbV oxo environment is complicated by longer‐range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the 93Nb NMR interaction parameters generated here are the all‐electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR‐CASTEP DFT approaches, which account for the short‐ and long‐range symmetries, periodicities and interaction‐potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.  相似文献   

6.
A comprehensive investigation of selenium chemical shift tensors is presented. Experimentally determined chemical shift tensors were obtained from solid-state 77Se NMR spectra for several organic, organometallic, or inorganic selenium-containing compounds. The first reported indirect spin-spin coupling between selenium and chlorine is observed for Ph(2)SeCl(2) where 1J(77Se,35Cl)iso is 110 Hz. Selenium magnetic shielding tensors were calculated for all of the molecules investigated using zeroth-order regular approximation density functional theory, ZORA DFT. The computations provide the orientations of the chemical shift tensors, as well as a test of the theory for calculating the magnetic shielding interaction for heavier elements. The ZORA DFT calculations were performed with nonrelativistic, scalar relativistic, and scalar with spin-orbit relativistic levels of theory. Relativistic contributions to the magnetic shielding tensor were found to be significant for (NH4)2WSe4 and of less importance for organoselenium, organophosphine selenide, and inorganic selenium compounds containing lighter elements.  相似文献   

7.
Multinuclear (31P and 79/81Br), multifield (9.4, 11.75, and 21.1 T) solid‐state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single‐crystal X‐ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh4, because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non‐standard nuclei can correct or improve X‐ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, 79/81Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. 35/37Cl solid‐state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge‐including projector‐augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ11, on the shortest Br? P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey’s theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as 79/81Br, can afford insights into structure and bonding environments in the solid state.  相似文献   

8.
An azobenzene derivative, namely diheptylazobenzene, showing the nematic and smectic A liquid crystalline phases, was investigated by means of a combined approach based on NMR and DFT calculations. 14N NMR quadrupole‐ and chemical‐shift‐perturbed spectra were acquired in the whole mesophasic range, providing both experimental quadrupolar splittings and chemical shift anisotropy values. On the same mesogen, deuterium labelled at the α‐position of the hydrocarbon chain, 2H NMR quadrupole‐perturbed spectra were recorded. The analysis of these NMR data was performed with the help of ab initio calculations, in vacuo and by taking into account the effect of the anisotropic environment typical of liquid crystals, by using the IEF‐PCM model. The geometry optimizations of the azomesogen in the trans and cis configurations were performed by DFT calculations employing the combination of B3LYP functional with the 6‐311G(d) basis set. The analysis of experimental NMR data was performed by considering the trans configuration as the most populated one and the corresponding quadrupolar tensors and chemical shielding tensors were determined at the DFT level of theory. The main result of this work is the determination of a relatively high and temperature‐dependent molecular biaxiality of the trans state of this azomesogen.  相似文献   

9.
10.
Intermolecular coordination effects on the 31P NMR spectra of molecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorus pentachloride were studied by theoretical and experimental methods. The formation of intermolecular dative N→P bond was shown to be accompanied by upfield shift of the phosphorus resonance signal by more than 200 ppm. Appreciable contribution of relativistic effects to 31P NMR chemical shifts was revealed; the spin-orbital contribution to 31P shielding constant was estimated at >210 ppm. Consideration of solvent effect was found to be crucial while studying steric structure of molecular complexes of azoles with phosphorus pentachloride and intermolecular coordination effects on 31P NMR chemical shifts.  相似文献   

11.
Metal NMR shielding and electric‐field gradient (EFG) tensors are examined by quantum‐chemical calculations for a set of 14 titanium(IV) complexes. Benchmarks are performed for titanocene chlorides that have been characterized recently by solid‐state NMR experiments, focusing on the dependence of TiIV NMR parameters on the computational model in terms of the choice of the density functional, and considering molecular clusters versus infinite‐periodic solid. Nearest‐neighbor and long‐range effects in the solid state are found to influence NMR parameters in systems without spatially extended ligands. Bulky ligands increase the fraction of local structure and bonding information encoded in the EFG tensors by reducing intermolecular interactions. Next, Ti shielding constants and EFG tensors for a variety of olefin (co)polymerization catalysts are analyzed in terms of contributions from localized molecular orbitals representing Lewis bonds and lone pairs. Direct links between the observed theoretical trends and the local bonding environment around the Ti metal center are found. A specific dependence of the Ti EFG tensors on the exact arrangement and type of surrounding bonds is demonstrated, providing a basis for further studies on solid‐supported titanium catalytic systems.  相似文献   

12.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

13.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

14.
A preliminary set of solid-state 139La and 15N NMR data for lanthanum-containing metallocenes is presented, including (C5H5)3La, (C5Me4H)3La, [(C5Me5)2La]+[BPh4]-, and 15N-enriched [(C5Me4H)2La(THF)]215N2. Broad 139La NMR spectra, with breadths ranging from 600 kHz to 2.5 MHz, were acquired with piecewise QCPMG techniques at 9.4 T. Simulations of the spectra reveal 139La quadrupolar coupling constants (CQ) between 44 and 105 MHz. In addition, the first NMR measurement of a nitrogen chemical shift (CS) tensor for dinitrogen bound side-on to a metal atom is reported for [(C5Me4H)2La(THF)]215N2. The 139La NMR parameters show remarkable sensitivity to changes in metallocene structure and can be interpreted in an intuitive manner. Preliminary RHF and DFT calculations of 139La electric field gradient (EFG) and nitrogen CS tensors are used to provide tensor orientations and to rationalize the origin of the NMR parameters in terms of molecular structure and symmetry. The sensitivity of 139La and 15N NMR tensor parameters to changes in structure and bonding should prove invaluable in future studies of noncrystalline and disordered systems.  相似文献   

15.
The 31P chemical shift (CS) tensors of the 1,3,2‐diazaphospholenium cation 1 and the P‐chloro‐1,3,2‐diazaphospholenes 2 and 3 and the 31P and 19F CS tensors of the P‐fluoro‐1,3,2‐diazaphospholene 4 were characterized by solid‐state 31P and 19F NMR studies and quantum chemical model calculations. The computed orientation of the principal axes system of the 31P and 19F CS tensors in the P‐fluoro compound was found to be in good agreement with experimentally derived values obtained from evaluation of P–F dipolar interactions. A comparison of the trends in the chemical shifts of 1 – 4 with further available literature data confirms that the unique high shielding of δ11 in the cation 1 can be related to the effective π‐conjugation in the five‐membered heterocycle, and that a further systematic decrease in δ11 for the P‐halogen derivatives 2 – 4 is attributable to the increased perturbation of the π‐electron distribution by interaction with the halide donor. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A series of scandium compounds, namely ScPO4, ScOF, Li3Sc(BO3)2, and CaSc2O4, were prepared according to procedures described in the literature, and then characterised by powder X-ray diffraction and solid-state 45Sc-NMR spectroscopy. By computer fitting, the quadrupolar interaction parameters χ and η, as well as the isotropic chemical shifts δiso were extracted from the NMR spectra. For comparison and site assignment of 45Sc, density functional theory (DFT) calculations of the EFG tensor were carried out with the Castep code. For the compounds with a well-defined formal coordination number (CN), a convincing linear correlation between CN and isotropic chemical shift could be established.  相似文献   

17.
27Al NMR Studies on Alkali Fluoroaluminates The 27Al NMR spectra of the alkali fluoroaluminates sensitively reflect the kind of condensation of the AlF6 octahedra. Whereas the chemical shift of the octahedral Al is shown to be rather independent on structural details, clear differences in the electric field gradients of isolated and condensed AlF6 octahedra were found. In contrast to the isolated octahedra which show only weak effects of quadrupole interaction, both for chains and layers of AlF6 octahedra axial EFG tensors result with quadrupolar coupling constants of between 10 and 13 MHz; for the threefold chains in CsAlF4 only a value of 7.5 MHz is obtained.  相似文献   

18.
Monoalkylated acylguanidines are important functional groups in many biologically active compounds and additionally applied in coordination chemistry. Yet a straightforward assignment of the individual NH chemical shifts and the acylguanidine conformations is still missing. Therefore, in this study, NMR spectroscopic approaches for the chemical and especially the conformational assignment of protonated monoalkylated acylguanidines are presented. While NOESY and 3JH, H scalar couplings cannot be applied successfully for the assignment of acylguanidines, 4JH, H scalar couplings in 1H,1H COSY spectra allow for an unambiguous chemical shift and conformational assignment. It is shown that these 4JH, H long‐range couplings between individual acylguanidinium NH resonances are observed solely across all‐trans (w) pathways. Already one cis orientation in the magnetisation transfer pathway leads to signal intensities below the actual detection limit and significantly lower than cross‐peaks from 2JNH, NH couplings or chemical exchange. However, it should be noted that also in the case of conformational exchange being fast on the NMR time scale, averaged cross‐peaks from all‐trans 4JH, H scalar couplings are detected, which may lead at first glance to an incomplete or even wrong conformational analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Several 1:1 adducts of gallium trihalides with triarylphosphines, X3Ga(PR3) (X=Cl, Br, and I; PR3=triarylphosphine ligand), were investigated by using solid‐state 69/71Ga and 31P NMR spectroscopy at different magnetic‐field strengths. The 69/71Ga nuclear quadrupolar coupling parameters, as well as the gallium and phosphorus magnetic shielding tensors, were determined. The magnitude of the 71Ga quadrupolar coupling constants (CQ(71Ga)) range from approximately 0.9 to 11.0 MHz . The spans of the gallium magnetic shielding tensors for these complexes, δ11?δ33, range from approximately 30 to 380 ppm; those determined for phosphorus range from 10 to 40 ppm. For any given phosphine ligand, the gallium nuclei are most shielded for X=I and least shielded for X=Cl, a trend previously observed for InIII–phosphine complexes. This experimental trend, attributed to spin‐orbit effects of the halogen ligands, is reproduced by DFT calculations. The signs of CQ(69/71Ga) for some of the adducts were determined from the analysis of the 31P NMR spectra acquired with magic angle spinning (MAS). The 1J(69/71Ga,31P) and ΔJ(69/71Ga, 31P) values, as well as their signs, were also determined; values of 1J(71Ga,31P) range from approximately 380 to 1590 Hz. Values of 1J(69/71Ga,31P) and ΔJ(69/71Ga,31P) calculated by using DFT have comparable magnitudes and generally reproduce experimental trends. Both the Fermi‐contact and spin‐dipolar Fermi‐contact mechanisms make important contributions to the 1J(69/71Ga,31P) tensors. The 31P NMR spectra of several adducts in solution, obtained as a function of temperature, are contrasted with those obtained in the solid state. Finally, to complement the analysis of NMR spectra for these adducts, single‐crystal X‐ray diffraction data for Br3Ga[P(p‐Anis)3] and I3Ga[P(p‐Anis)3] were obtained.  相似文献   

20.
Aluminium carbide, Al4C3, was characterised by 13C and 27Al solid‐state NMR spectroscopy. The 13C NMR spectra display two resonances with an intensity ratio of 1:2, which is in agreement with the reported crystal structure. The 27Al NMR spectra of Al4C3 under both static and MAS conditions were deconvoluted into two spectral components, belonging to the two aluminium species Al1 and Al2 in the crystal structure of Al4C3. The spectral fit allowed for determination of the relatively large quadrupolar coupling constants (χ ≈? 16 MHz) of both 27Al species. One aluminium species displayed a tendency of having a χ of slightly smaller magnitude compared to the other. By carrying out DFT calculations of the EFG tensor at the 27Al sites using the Wien2k software, we could tentatively assign the smaller χ site to be the crystallographic Al1 species. Also, the isotropic chemical shift for the carbon‐coordinated aluminium in Al4C3 could be determined, being in the range of 111 to 120 ppm. This is somewhat larger than those shift values observed for 27Al in nitrogen coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号