首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Polyether ether ketone (PEEK) is a promising material for the encapsulation of electronic components for medical implants but a strong and hermetic joining technology is required. Autohesion is a self‐bonding method that avoids the need for adhesives. The strengths of autohesive joins using amorphous and semi‐crystalline PEEK films after surface activation using RF plasma were compared. Both types of PEEK films showed successful autohesion after activation with the bond strength of the amorphous sample being twice as high as the bond strength of the semi‐crystalline sample. Plasma treatment increased the autohesion strength of PEEK with no observed change in surface roughness (as measured by profilometer). The water contact angle was reduced by the treatment. X‐ray photoelectron spectroscopy (XPS) was carried out to determine surface chemistry. In the case of the semi‐crystalline surface, plasma treatment increased the relative percentage of C? O functional groups compared to the untreated surface. For treated surfaces nitrogen concentration correlated positively with bond strength while oxygen concentration correlated negatively with the semi‐crystalline PEEK samples and positively with the amorphous PEEK samples. The oxygen groups most likely are formed after the treatment by ambient oxidation are not conducive to bond formation, possibly because of the quenching of radicals that would otherwise form links. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Polyether ether ketone (PEEK) is a substrate for metal plating to overcome insulation defects and satisfy the increased demands of mechanically robust electronic circuit boards. However, pristine PEEK is hydrophobic; hence, the adhesion between the metal film and PEEK substrate is poor. Therefore, the PEEK surface should be modified to improve hydrophobicity. We have proposed the active oxygen (AOS) treatment under ultraviolet (UV) light as an alternative to a conventional plasma treatment method. Characteristics of the PEEK surfaces obtained by these methods are compared. We explore the effects of reactive-oxygen and UV light exposure time on the PEEK surface modification. The contact angle of water drop on PEEK after the AOS treatment is lower than that of untreated PEEK. Furthermore, COO groups are observed on the PEEK surface after the treatment. Although plasma treatment has the effect of roughening the surface, it is desirable not to roughen the surface for use in electronic circuit boards. Moreover, we have reported the adhesion strength between PEEK and copper plating without surface roughening.  相似文献   

3.
Novel chitosan-coated PEEK biomaterials were prepared by air plasma modification. Low-temperature plasma effect on changes of specific thermal, mechanical and adhesive properties of polyetheretherketone (PEEK) was investigated. The topography and surface roughness of the prepared materials were determined using an optical profilometer. The wetting and energetic properties of biomaterials were studied by means of advancing and receding contact angles measurements and then apparent surface free energy (and its components) were evaluated applying the LWAB (Lifshitz–van der Waals Acid Base) theory and contact angle hysteresis model. After air plasma treatment a fairly hydrophobic character of PEEK was changed to strongly hydrophilic one. Significant differences in the wettability and thermal stability of samples were observed. However, hardly any differences in excellent mechanical properties were noticed. The profilometer images showed an increase in the surface roughness of PEEK modified surface due to the change of cross-link density, elasticity and formation of additional polar groups on the surface. Plasma treated polyetheretherketone surfaces had better adhesive features and stable chitosan coating was created. Modification by chitosan improved antibacterial properties, inherent haemostatics and polymer biocompatibility. These advantages allowed to obtain new attractive biomaterials from the same polymer differing in properties for a wide spectrum of applications, mainly regenerative medicine and orthopedic surgery.  相似文献   

4.
In this work, ozone modification method and air‐oxidationwere used for the surface treatment of polyacrylonitrile(PAN)‐based carbon fiber. The surface characteristics of carbon fibers were characterized by XPS. The interfacial properties of carbon fiber‐reinforced (polyetheretherketone) PEEK (CF/PEEK) composites were investigated by means of the single fiber pull‐out tests. As a result, it was found that IFSS (interfacial shear strength) values of the composites with ozone‐treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that ozone treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibers on the tribological properties of CF/PEEKcomposites was comparativelyinvestigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PEEK matrix. Thus the wear resistance was significantly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In the second part of this general study, the carbon fiber–PEEK interfacial shear strength is measured by means of a fragmentation test on single-fiber composites. Different thermal treatments (continuous cooling from the melt, isothermal treatments and long melting temperature time) are applied to these model composites prior to testing. The results are systematically compared with the previously determined reversible work of adhesion between carbon fiber and PEEK. It is shown that physical interactions at the interface determine, to a large extent, the magnitude of the interfacial shear strength between both materials. However, it appears that the magnitude of the stress transfer from the matrix to the fiber is affected either by the existence of an interfacial layer or by a preferential orientation of the polymer chains near the fiber surface. The results obtained on systems that have been subjected to isothermal treatments (isothermal crystallization of PEEK) seem to confirm the existence of a transcrystalline interphase, the properties of which are dependent upon the crystallization rate of the matrix and the interfacial adhesion energy.  相似文献   

6.
Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characterization of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.  相似文献   

7.
In this study, the simple and effective surface modification of polymers through ion irradiation is described to improve metal-to-polymer adhesion. The surface of polymer films was irradiated with 150 keV Xe+ ions at various fluences, and copper (Cu) was then deposited onto the surface-modified polymer films. The surface properties of the modified films were investigated in terms of their wettability, chemical composition, and surface morphology. The metal-to-polymer adhesion strength was estimated using a nano-indenter. As a result, the surface environment of the polymer films was physiochemically changed by ion irradiation, which could have a significant effect on the metal-to-polymer adhesion. The irradiated polymer films exhibited a higher adhesion strength than the control film, and the strength depended on the fluence. The maximum adhesion strength (8.45 mN) of the Cu deposited on the irradiated PEN films was obtained at a fluence of 5×1014 ions/cm2.  相似文献   

8.
CaCO3/PEEK复合体系的力学行为和热行为研究   总被引:7,自引:0,他引:7  
以聚醚醚酮和碳酸钙复合体系为研究对象,考察了偶联剂和填料添加量对复合材料力学行为和热行为的影响.发现磺化聚醚醚酮作为偶联剂能有效地改善材料的力学性能,提高基体树脂的玻璃化转变温度,降低基体树脂的熔点,有助于改善聚醚醚酮的加工条件  相似文献   

9.
Thermoplastic polyolefin panels were treated with a flame, flame & water, and accelerated thermo molecular adhesion process (ATmaP) treatment. XPS, contact angle and adhesion test (pull off) results were acquired over a one year period to determine the changes in the elemental composition, surface energy and adhesion strength respectively over time. All surface-treated thermoplastic polyolefin samples showed a sharp decline in adhesion strength up to an ageing period totalling 6 months. The decline in adhesion strength was correlated with a decline in the nitrogen-containing constituents and C–O functional groups at the surface and a decline in surface energy for the flame & water-treated sample. There was no significant change in adhesion strength for all samples for ageing periods greater than 6 months. ATmaP-treated thermoplastic polyolefin outperformed the other two surface treatments in adhesion strength tests due to ATmaP retaining nitrogen-based functional groups (mainly nitrogen oxides) over the year long study. This retention of functionality allowed for a slower ageing process for ATmaP-treated surfaces in comparison to the other surface treatments.  相似文献   

10.
A d.c. oxygen glow discharge was used to modify medical‐grade poly(vinyl chloride) (PVC) to study how surface chemistry and hydrophilicity influence Pseudomonas aeruginosa adhesion. The effects of plasma exposure time on the resulting surface, including chemical composition, wettability and roughness, were assessed using x‐ray photoelectron spectroscopy, contact angle measurements and atomic force microscopy analysis. A significant alteration in the hydrophilicity of the native PVC surface was observed after oxygen glow discharge treatment. The water contact angle decreased from ~80° to 8–20°, with a weak dependence of the exposure time used. The change in surface wettability resulted from the incorporation of oxygenated functional groups, including esters, ketones and acids, as indicated by XPS analysis. The amount of oxygen incorporation was shown to be essentially independent of plasma exposure time. However, prolonged plasma exposure resulted in increased surface roughness. Bacterial adhesion efficiency was evaluated for PVC modified by 120 s of plasma exposure, because this exposure time was determined to yield the maximum decrease in contact angle. Oxygen plasma treatment of native PVC was found to yield a 70% reduction in bacterial adhesion for the four strains of Pseudomonas aeruginosa tested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The surface modification of polyethylene (PE) by neutral nitrogen species (ground and excited state N2 as well as atomic N; modified nitrogen plasma treatment) has been compared to the effect of nitrogen ion bombardment using X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements. XPS results indicate that a greater nitrogen concentration was grafted during the modified nitrogen plasma treatment of PE, an effect that was attributed to surface sputtering during ion beam modification. The distribution of nitrogen-containing functionalities was strongly dependent upon the treatment strategy; the modified nitrogen plasma treatment lead predominantly to imine groups being formed at the PE surface, while amine groups were the dominant species produced during ion beam modification. The presence of electron irradiation during the modified nitrogen plasma treatment of PE did not modify the rate of nitrogen incorporation or change the nature of N-containing functional groups produced but did lead to a systematic decrease in contact angle.  相似文献   

12.
A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0–12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min−1, acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 −14 m2, applying acetonitrile–water 70:30 (v/v) as a mobile phase.  相似文献   

13.
提出一种酸碱结合改性聚醚醚酮(PEEK)方法,并评价其对PEEK表面类骨磷灰石形成的影响.结果表明,通过磺化处理引入-SO3H,显著改善了样品的亲水性,且磺化程度与H2SO4浓度和磺化反应时间成正比,并影响样品的表面形貌.质量分数为85% H2SO4处理30 min的PEEK-S具有较好的改性效果.将PEEK-S进一步用NaOH处理,可继续引入Na元素并提高样品的亲水性,但会受处理时间的影响.模拟体液(SBF)浸泡的生物活性评价结果表明,磺化后碱处理24 h的PEEK-Na具有快速的类骨磷灰石沉积能力,浸泡3 d的样品表面即可完全被沉积的类骨磷灰石覆盖,表现出较佳的生物活性.此酸碱双重改性方法操作简单,可大幅度提升PEEK的生物活性,具有较好的应用前景.  相似文献   

14.
The irradiation effects of oxygen on polysulfone have been investigated at energies of 20 keV, 150 keV and 2 MeV. The strong improvement of endothelial cell adhesion and proliferation is found on ion irradiated polysulfone at 20 keV. Such improvement is declined with increasing ion energy. The changes of surface color and free energy are strongly dependent on ion energy and dose. The formation of amorphous carbon phase is demonstrated by Raman spectroscopy and its degree is correspondent to the color changes observed. The formations of hydroxyl and carboxyl groups are confirmed by the attenuated total reflectance (ATR) FTIR spectroscopy. The depletions of heteroatoms are conjectured by detail analysis of X-ray photoelectron spectroscopy (XPS). Since no single one of these changes can be related directly to the improved adhesion and proliferation of endothelial cells on irradiated surface, we argue that the distribution of functional groups is crucial in promoting the adhesion of endothelial cells. Although the distribution cannot directly be detected at present, the irradiation effects were related to the results of TRIM simulation. The surface changes can be controlled by adjusting the size energy and dose of irradiating ion for the optimum morphology to cell adhesion.  相似文献   

15.
The effects of different surface modifications on the adhesion of copper to a liquid‐crystalline polymer (LCP) were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact‐angle measurements, and pull tests. High pull‐strength values were achieved when copper was sputter‐deposited onto plasma and reactive‐ion‐etching (RIE)‐pretreated LCP surfaces. The values were comparable to the reference pull strengths obtained with laminated copper on the LCP. The adhesion was relatively insensitive to the employed feed gas in the pretreatments. The surface characterizations revealed that for RIE and plasma treatments, the enhanced adhesion was attributable to the synergistic effects of the increased surface roughness and polar component of the surface free energy of the polymer. However, if the electroless copper deposition was performed on RIE‐ or plasma‐treated surfaces, very poor adhesion was measured. Good adhesion between the LCP substrate and electrolessly deposited copper was achieved only in the case of wet‐chemical surface roughening as a result of the creation of a sufficient number of mechanical interlocking sites, together with a significant loss of oxygen functionalities, on the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 623–636, 2003  相似文献   

16.
The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon‐containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E‐glass epoxy resin composites were surface treated with the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n‐methylpyrrolidone solution, injected via specially designed flame‐treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF‐SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF‐SIMS showed a significant decrease in silicon‐containing species on the surface after ATmaP treatment. E‐glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and C?O functional groups (from XPS) and higher concentrations of oxygen and nitrogen‐containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF‐SIMS). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Polypropylene (PP) is used in many automotive applications where good paint adhesion is of primary importance. PP is widely known for its low surface energy which impacts negatively on its adhesion strength. PP surfaces were modified using a new industrial surface‐treatment process known as the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP grafts functional groups to the polymer surface derived from an atomised and vapourised nitrogen‐containing coupling agent. The surface properties and adhesion performance of PP samples treated using the ATmaP process and two different flame processes were compared using XPS, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and mechanical testing (pull‐up tests). The latter showed that ATmaP improved adhesion strength significantly in comparison with conventional flame treatments. XPS showed an increase in oxygen and nitrogen concentration on the surface of ATmaP‐treated samples compared with untreated and flame‐treated samples. Principal components analysis (PCA) of the ToF‐SIMS data revealed the major phenomena occurring during the surface treatment of PP samples. Early stage events, including the chain scission of the PP backbone chain and the subsequent reaction of these chains with the surrounding air, are captured by the first principal component (PC1). The increase in the concentration of NO surface functional groups resulting from ATmaP treatment is captured by the second principal component (PC2). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this general study is to determine the physicochemical characteristics and mechanical properties of carbon fiber–PEEK interfaces. In the first part, the dispersive component of the surface energy and the electron acceptor–donor (acid–base) characteristics of PEEK polymer and different types of untreated and surface-treated carbon fibers are determined by means of inverse gas–solid chromatography at infinite dilution. It appears, in particular, that the acid–base surface properties of PEEK and, consequently, the orientation of macromolecules near the surface, depend on the processing of this polymer. Moreover, according to previous work, an estimation of the adhesion energy, corresponding to physical interactions (London and acid–base interactions) at carbon fiber–PEEK interfaces is proposed. Whatever the surface characteristics of PEEK, the highest level of carbon fiber–PEEK adhesion is achieved in systems involving oxidized or sized carbon fibers.  相似文献   

19.
In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system.  相似文献   

20.
聚醚砜、聚醚醚酮的微波磺化研究   总被引:2,自引:0,他引:2  
聚醚砜、聚醚醚酮的微波磺化研究牛利,张万金,吕慧娟,蒋大振(吉林大学化学系,长春,130023)关键词聚醚砜,聚醚醚酮,微波磺化改性微波对被照射物质能产生深层加热作用,且加热速度快、均匀,因而在化学合成中可大幅度地提高反应速度[1,2].对聚醚砜(P...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号