首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
多组分体系中的协同作用为设计高效的二氧化碳还原电催化剂提供了新的思路. 本工作通过双模板法和化学还原法精心设计制备了大孔/介孔镍氮掺杂碳(Ni-N-OMMC)负载银纳米颗粒复合材料(Ag/Ni-N-OMMC), 用于高效电催化还原CO2为CO. 此复合材料表现出良好的电催化活性, 在CO2饱和的0.1 mol•L–1 KHCO3电解液中, 电位为–1.0 V (相对于可逆氢电极, RHE)时CO的电流密度(JCO)高达33.29 mA•cm–2. 并具有较宽的工作电压范围, 在–0.7~–1.0 V (vs. RHE)下, CO的法拉第效率超过90%. 其优异的电催化性能可能归因于Ag纳米颗粒与具有丰富Ni-N x活性位点的Ni-N-OMMC载体之间的协同效应, 以及三维互联有序大孔/介孔结构提供的高比表面积和高效的质量/电荷传输.  相似文献   

2.
以Ti3AlC2和CuCl2·2H2O为前驱体,成功制备了Cu0纳米颗粒修饰和Cu2+自插层的手风琴状二维催化剂Cu0/Cu2+-Ti3C2Tx,用于电催化还原CO2。对材料的电化学性能进行了测试,结果表明,在CO2饱和的0.5 mol/L KHCO3电解液中,与原始的Ti3AlC2相比,Cu2+/Cu0-Ti3C2Tx催化剂电催化CO2转化为乙烯(C2H4)的起始电位从-0.65 V(vsRHE)降至-0.01 V(vs RHE),最大电流密度从0.19 mA/cm2增至2.50 mA/cm2  相似文献   

3.
以二氰二胺、硒粉和钨酸钠为前驱体,采用一锅法成功制备出Se掺杂WO3·0.5H2O/g-C3N4(Se/WCN)催化剂。并采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和X射线光电子能谱(XPS)对样品的物相结构、形貌及化学组成进行表征。与原始的WO3和g-C3N4相比,Se/WCN催化剂的起始电位降到了-0.75 V(vs RHE),电流密度高达70 mA·cm-2,表现出更高的电催化活性。而光照后,Se/WCN的催化性能进一步提升,起始电位从-0.75 V(vs RHE)降至-0.65 V(vs RHE),电荷转移电阻由371.4Ω减小到310.0Ω。  相似文献   

4.
采用原位时间分辨红外光谱和原位显微Raman光谱技术对Ir/SiO2上甲烷部分氧化(POM)制合成气反应的初级产物和反应条件下催化剂表面物种进行了跟踪考察,实验结果表明,在H2预还原的新鲜Ir/SiO2表面,CO是V(CH4):V(O2):V(Ar)=2:1:45混合气反应的初级产物,因而甲烷的直接氧化过程是CO生成的主要途径;而在稳态反应条件下,CO生成的途径可能主要来自CO2和H2O与催化剂表面积碳物种(CHx)和/或CH4的反应.催化剂上生成的积碳可能是导致稳态条件下Ir/SiO2上POM反应机理不同于H2预还原的新鲜催化剂的主要原因.  相似文献   

5.
电催化还原二氧化碳制备乙烯是备受关注的热点问题,高效催化剂的制备是决定乙烯产率的关键因素。本文在1-辛基-3-甲基咪唑氯的水溶液(OmimCl : H2O = 1 : 5,体积比)中通过电剥离石墨棒制备了1-辛基-3-甲基咪唑功能化石墨片(ILGS),在水溶液中负载氧化亚铜后得到氧化亚铜/1-辛基-3-甲基咪唑功能化石墨片复合材料(Cu2O/ILGS),通过透射电镜、X射线光电子能谱、拉曼光谱和X射线衍射对其组成和结构进行了系统研究,发现ILGS由多层石墨烯组成,表面富含缺陷。这些缺陷被1-辛基-3-甲基咪唑通过共价键修饰,形成类似鸟巢状的微结构,平均直径5 nm的Cu2O纳米颗粒在石墨片表面均匀分散。在0.1 mol∙L−1碳酸氢钾水溶液中,研究了Cu2O/ILGS在不同电压下催化CO2电还原的性能。结果表明,Cu2O是主要活性中心并在CO2还原过程中被逐渐还原成铜,导致产物的法拉第效率随着反应时间而变,在−1.3 V (vs RHE)电压下,乙烯的法拉第效率最高达到14.8%,其性能归因于Cu2O/ILGS复合材料中的鸟巢状微结构对Cu2O纳米颗粒的稳定作用。  相似文献   

6.
Ni-Mg-ZrO2催化剂上煤层甲烷三重整制合成气   总被引:2,自引:0,他引:2  
采用共沉淀法制备Ni-ZrO2和Ni-Mg-ZrO2催化剂,用BET、XRD、H2-TPR、CO2-TPD等技术对催化剂进行了表征。采用固定床流动反应装置,研究了催化剂在煤层甲烷三重整制合成气反应中的催化性能;考察了反应温度和原料气体组成对反应的影响。实验结果表明,Ni-Mg-ZrO2催化剂在反应温度800℃、常压、空速为30 000 mL/(g·h)、CH4/CO2/H2O/O2/N2=1.0/0.45/0.45/0.1/0.4的条件下,CH4转化率为99%,CO2转化率为65%左右,生成合成气H2/CO体积比为1.5,并在58 h的实验中催化剂活性和稳定性良好。这主要归因于催化剂中金属和载体之间的强相互作用、催化剂的高热稳定性和强碱性。此外,较高的反应温度有利于甲烷三重整反应的进行;通过调节原料气组成,可以获得不同H2/CO体积比的合成气。  相似文献   

7.
电催化CO2还原反应(eCO2RR)受到催化剂本征活性以及传质的限制,导致材料的催化活性低、反应起始电位高等问题。我们以类沸石锌盐咪唑骨架(ZIF-8)材料为研究对象,探究了不同粒径ZIF-8材料的eCO2RR性能。优选粒径为50 nm的ZIF-8材料,进一步引入碳纳米管(CNT)作为其导电基底材料,通过原位生长,构建了复合材料ZIF-8-50@CNT的多级孔结构和疏水界面。eCO2RR实验结果表明,CNT的引入提高了催化剂的导电性,优化后的复合材料有效地降低了反应的起始电位。在-1.1 V(相对可逆氢电极(RHE))电位下,CO部分电流密度为15.6 mA·cm-2,ZIF-8-50@CNT催化剂的比表面活性提升了3.5倍(相比ZIF-8-50),塔菲尔斜率降低到136 mV·dec-1。并且产物CO的选择性和稳定性得到了提高,在宽电势窗口-0.9~-1.2 V(vs RHE)内,CO的法拉第效率(FE)保持在80%以上。在10 h稳定性测试中,催化剂活...  相似文献   

8.
以二苯基-1-甲基咪唑膦(dpim)为配体制备了一种新型的配合物催化剂Ni(dpim)2Cl2. 循环伏安研究表明,Ni(dpim)2Cl2配合物在氮气气氛下表现出两步还原的电化学行为,在-0.7 V下为两电子的不可逆还原,在-1.3 V下为单电子准可逆还原. 向电解液中通入CO2后,在-1.3 V下的还原峰变得不可逆,且其峰电流从0.48 mA·cm-2增大到0.55 mA·cm-2. 在质子源(CH3OH)存在的条件下,该还原峰电流可继续增大到0.72 mA·cm-2. 该研究结果表明,Ni(dpim)2Cl2配合物对CO2还原具有良好的电催化性能,且其电催化还原过程符合ECE机理. 在-1.3 V下恒电位电解得到的还原产物主要为CO,催化转换频率(Turnover of Frenquency, TOF)为0.17 s-1.  相似文献   

9.
在以H2O为质子源的光催化二氧化碳还原反应(CO2RR)过程中,光解H2O产氢气(H2)被认为是一个竞争反应.因此,光催化CO2RR过程需要抑制H2的产生,以提高碳氢产物的选择性和产率.以CO2和H2为反应物的逆水气变换反应(RWGS)是常见的CO2加氢反应,在较高的温度和催化剂作用下生成CO和H2O.目前,光催化CO2RR研究主要聚焦于产物的选择性,而有关光解H2O产生的还原性气体H2在光热效应的促进下成为CO2RR中新的质子源研究较少.光热催化是一种新的高效催化反应方式,在反应过程中需要光照和加热.光照能够促进半导体光生载流子的激发,热效应则能降低反应物分子的活化势垒,并能够促进中间产物的表面迁移以及生成物的脱附.利用光热催化热力学和动力学上的有利条件,为以H2  相似文献   

10.
本文以氧化石墨烯包覆泡沫镍电极(GO@NF)作为基底,采用水热法在GO@NF基底上原位生长CoO纳米花,同时GO在水热过程中被同步热还原为还原氧化石墨烯(RGO),从而一步制得还原氧化石墨烯包覆泡沫镍负载CoO纳米花电极(CoO/RGO@NF)。使用XRD和SEM对CoO/RGO@NF电极进行表征,发现CoO纳米花均匀生长在泡沫镍三维网络结构上,CoO纳米花为大量针状纳米棒围绕一个中心而成的花状结构,纳米棒的长度约为10 ~ 15 μm,直径约为100 ~ 200 nm。使用循环伏安和线性扫描法测试了CoO/RGO@NF电极电催化CO2的还原性能,在-0.76 V(vs. SHE)电位下,CoO/RGO@NF电极电催化CO2还原的电流效率达到70.9%,产甲酸法拉第效率达到65.2%,甲酸产率为59.8 μmol·h-1·cm-2,且电极可持续稳定电催化还原CO2 4 h,表明CoO/RGO@NF电极对CO2电还原有着优良的催化活性、选择性和稳定性。  相似文献   

11.
将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源危机和控制温室气体排放的有效策略之一,但此法受限于缺乏高活性与高选择性的电催化剂。因此,我们通过热解含镍金属有机框架结构(MOF)和二氰二胺制得负载高含量镍单原子(7.77% (w))的超薄氮掺杂二维碳纳米片用于电催化还原CO2生成CO。研究发现高温热解能将MOF中Ni2+转化为Ni+-N-C和Ni2+-N-C结构,且Ni+-N-C含量依赖于热解温度——其含量随热解温度增加呈现火山型变化。800 ℃下,Ni2+到Ni+-N-C的转化和石墨化的C生成达到最优水平。Ni+-N-C结构有适宜的*CO中间体结合能,能有效地抑制析氢反应的同时还能促进CO生成。因此,800 ℃热处理制得的材料(Ni-N-C-800)催化CO2生成CO效率最高。调节电解液浓度,能进一步优化电催化性能。当电解液(碳酸氢钾)浓度为0.5 mol·L-1时,Ni-N-C-800的CO生成选择性在较宽电压窗口内(-0.77到-1.07 V vs. RHE)都高于90%,且具有优良的稳定性。这些结果表明,选择合适的前躯体通过调控热解温度以及氮掺杂可以有效提高镍基MOF衍生催化剂的二氧化碳电催化性能。  相似文献   

12.
传统过程工业,诸如我国水泥、钢铁、耐材和电石等行业,都涉及碳酸盐高温热分解过程,其导致的CO2排放量超过了全国工业碳排放总量的50%,大量CO2排放对全球气候产生了不可逆转的影响。因此,如何减少过程工业排放的CO2并且充分利用碳酸盐热分解的余热面临着巨大挑战。为进一步降低该类过程工业的CO2排放量同时降低其热分解的能耗,通过利用地球上储量丰富的温室气体CH4,对碳酸盐进行共热耦合重整制备合成气等高附加值产品,有望成为一种环保经济的技术路线。本文总结了(光/热)碳酸盐炼制耦合甲烷干重整反应、醇类重整反应以及CO2捕获反应的最新进展,并且对碳酸盐炼制耦合甲烷干重整反应在理论计算方面的研究进展进行了介绍,进一步结合本课题组近期关于碳酸盐共热耦合甲烷重整的最新结果,我们提出了该类耦合反应的发展展望,为实现CO2的高效转化和减排增效提供了思路。  相似文献   

13.
近年来,催化CO2加氢合成甲醇被视为有望解决温室效应和燃料枯竭的有效途径。目前,铜基催化剂因具有较高的反应活性被广泛应用于工业生产。然而,竞争逆水煤气变换反应产生的CO导致甲醇选择性较低,同时副产物水引起Cu发生不可逆烧结,进而降低甲醇产率。众所周知,CO能够调整分子的表面竞争吸附和活性位的氧化还原行为,本工作拟向原料气中掺入具有还原性的CO以抑制逆水煤气变换反应和防止表面氧化中毒。另一方面,通常认为铜基催化的CO2加氢制甲醇是结构敏感性反应,不同的前驱体能够显著影响催化剂结构和形貌,进而影响催化活性。因此,我们首先通过共沉淀法和蒸氨法制备了含有类水滑石前驱体(CHT-CZA)和复合物前驱体(CNP-CZA)结构的Cu/ZnO/Al2O3催化剂。随后,为探究CO掺杂后反应机理,在250 ℃,5 MPa的反应条件下,含有不同比例CO的原料气中(CO2:CO:H2:N2 = x:(24.5 - x):72.5:3)评价两种催化剂对甲醇合成的性能。评价结果显示两种催化剂反应性能趋势相同,随着CO含量增加,CO2转化率和STYH2O不断降低,STYMeOH逐渐增加。X射线光谱(XPS)显示随CO含量增加,催化剂表面还原性Cu比例增加。评价和表征结果说明CO引入抑制了逆水煤气变换反应的发生,通过还原被H2O氧化的活性Cu表面,促使更多的活性Cu位点暴露参与甲醇合成。另一方面,透射电镜(TEM)显示掺杂的CO会过度还原而引起颗粒团聚,导致催化剂逐渐失活。相比之下,含有水滑石前驱体的催化剂在任何气氛下均表现出更加优越的反应性能和长周期稳定性。这可归因于类水滑石前驱体独特的片层结构通过结构限域作用有效避免了因CO过度还原而导致的金属颗粒团聚,从而减少活性位点损失。  相似文献   

14.
实现碳氮循环是人类社会发展的迫切要求,也是催化领域的热门研究课题。在可再生能源的推动下,电催化技术引起了人们的广泛关注,且可以通过改变反应电压获得不同的目标产品。基于此,电催化技术被认为是缓解当前能源危机和环境问题的有效策略,对实现碳中和具有重要意义。其中,电催化CO2还原反应(CO2RR)和N2还原反应(N2RR)是一种有前途的小分子转化策略。然而,CO2和N2均为线性分子,其中C=O和N≡N键的高解离能导致了它们高的化学惰性。此外,最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间的巨大能量间隙使它们具有高的化学稳定性;且CO2和N2的低质子亲和力使它们难以被直接质子化。另一方面,由于CO2RR和N2RR与析氢反应(HER)具有相近的氧化还原电位,造成其与HER之间存在竞争性关系,这也是致使催化剂在CO2RR和N2RR转化效率低的重要影响因素。因此,CO2RR和N2RR仍然面临着过电位高及法拉第效率低等问题。为了克服这些瓶颈,人们为提升CO2RR和N2RR电催化剂性能做出了很多努力。众所周知,电催化过程发生在催化剂表面,主要涉及质量传递和电子转移等过程。由此可见,催化剂的性能与其质量和电子传输能力密切相关,而调控催化剂表面结构可以优化活性点的质量和电子转移行为。电催化剂的缺陷和界面工程可通过表面原子工程来实现电子结构调控,对于提高气体吸附能力、抑制HER、富集气体及稳定中间产物等具有重要意义。到目前为止,所报道的各种缺陷和复合电催化剂在提高CO2RR和N2RR催化性能等方面均表现出巨大的潜力。在此,我们综述了CO2RR和N2RR中催化剂缺陷工程及界面工程的最新进展;首先讨论了四种不同的缺陷(空位、高指数晶面、晶格应变和晶格无序)对CO2RR和N2RR性能的影响;然后,总结了界面工程在聚合物-无机复合材料催化剂中的重要作用,并给出了典型实例;最后,展望了原子级电催化剂工程的发展前景,提出了开发和设计高效CO2RR和N2RR电催化剂的未来发展方向。  相似文献   

15.
电催化过程是实现社会向可再生能源与化学品转型的主要驱动力之一。电催化动力学分析是探索反应机理和建立电催化剂构效关系行之有效的方法。本文将通过三个广泛研究的电催化反应:电化学CO2、CO还原反应和氧还原反应,探讨Tafel分析的普遍过程、隐含假设以及需要注意的问题。此外,本文将介绍电化学反应活化参数的基本概念和关键热力学、动力学变量之间的关系。  相似文献   

16.
由于水分解在绿色能源领域的重要作用,能够在碱性介质中进行析氢(HER)和析氧(OER)反应的双功能电催化剂具有重要的应用价值。本文报道一种具有丰富缺陷的表面改性NiCo2O4纳米线(NWs),在碱性介质中作为一种高效的整体水裂解电催化剂。X射线光电子能谱(XPS)分析表明,Co2+/Co3+比值的增加是表面修饰NiCo2O4纳米线具有优异双功能电催化性能的重要原因。结果表明,在1.0 mol·L-1 KOH溶液中,通过有机配体主导的表面改性,优化后的NiCo2O4纳米线在电流密度达到10 mA·cm-2时的HER过电位仅为83 mV,OER过电位仅为280 mV。更重要的是,有机配体表面改性后的NiCo2O4纳米线表现出了出色的水分解性能,在2.1 V电压下达到了100 mA·cm-2的电流密度。目前的工作凸显了提高NiCo2O4 NWs尖晶石结构中Co2+含量对促进整体水裂解的重要性。  相似文献   

17.
形貌控制和异质结构建是提升光催化剂性能的有效策略。本文采用In2O3修饰三维纳米花MoSx并构建S型异质结,为电子的传输提供了特殊的转移途径。通过合理调控In2O3的负载量,MoSx/In2O3的最佳产氢速率能够达到6704.2 μmol∙g−1∙h−1,是纯MoSx的1.8倍。采用荧光光谱和电化学测试证实复合材料中内部电子和空穴对的分离效率得到了有效的提升,并利用紫外漫反射测试和羟基自由基实验推测了析氢机理。  相似文献   

18.
过量化石能源的消耗导致大气中的二氧化碳含量不断上升,由此引发包括温室效应在内的环境问题。对此,常温常压下的电催化二氧化碳还原手段为制备高附加值的化工原料和实现碳循环提供了一种很有前景的技术储备。在众多的二氧化碳还原产物中,碳氢化合物尤其是乙烯,它作为塑料和其他化工产品的重要原料受到广泛的关注。电催化二氧化碳还原制乙烯工艺不仅可适配于现有的生产设备也可作为取代目前工业化的裂解方法。近年来,研究者们为了开发高效的电催化二氧化碳还原制乙烯催化剂开展了大量的研究。不过值得注意的是,大部分研究集中于铜基材料。尽管目前研究者取得了很多成果,但仍缺少可高选择性产乙烯的二氧化碳还原催化剂。如何设计出可活化二氧化碳分子,同时对*CO和*COH中间物有强吸附能力的催化剂是研究难点。针对此问题,本文中通过真空蒸镀的方法制备出一种富氧空位的非晶氧化铜纳米薄膜催化剂。受益于纳米薄膜的构建和氧空位的引入,该催化剂可快速进行电荷和物质的交换,并利于二氧化碳分子的吸附及优化还原中间产物的亲和力,进而表现出优异的电催化二氧化碳制乙烯的性能。结果表明,在加有0.1 mol·L-1碳酸氢钾溶液的H型电...  相似文献   

19.
以生物油为原料,在常压和空气氛围下进行非催化部分氧化气化实验制备合成气,考察了气化温度、氧油比对合成气形成特性及合成气品质的影响,并对生物油非催化部分氧化气化制备合成气的主要反应过程进行了讨论。结果表明,升高温度可以促进生物油经非催化部分氧化气化制合成气过程中相关转化反应的进行,合适的氧油比有利于合成气的增加。当温度为1 050℃,空气量为0.2 L/min,进料量为72 g/h时,生物油经部分氧化产生的气体中H2含量最高,CH4、CO和CO2很少;H2/CO和H2/(CO+CO2)均达到最大值,分别为4.3和3.2。  相似文献   

20.
CO2驱是一种具有广阔前景的提高油藏采收率的方法。其中,降低CO2与原油的最低混相压力以实现混相驱是增强CO2驱效果的重要手段。由此我们设计了由亲油基团十六烷基和亲CO2基团全乙酰蔗糖酯基结合的新型“亲油-亲CO2助混分子”十六酸全乙酰基蔗糖酯CAA8-X,研究发现,CAA8-X对超临界CO2流体和不同油相的煤油、白油以及长庆原油有优异的助混效果,界面张力消失法和细管实验法测定结果表明,CAA8-X可以将超临界CO2/长庆原油的最低混相压力降低20.5%。用分子动力学模拟计算了CO2分子与全乙酰蔗糖酯基的亲和能力,研究了这类新型“亲油-亲CO2助混分子”通过多酯头基降低与CO2亲和势能而降低油/CO2界面能的助混机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号