首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dummy-template molecularly imprinted microspheres were synthesized via precipitation polymerization employing 2,4-D isooctyl ester as the template molecule instead of 2,4-D butyl ester, while methacrylic acid and divinylbenzene were used as functional monomer and cross-linker in acetonitrile or a mixture of acetonitrile and toluene. The microspheres were characterized by scanning electron microscopy, laser particle size analyzer and fourier transform infrared spectrometry. Binding capacity experiment showed that the molecularly imprinted polymers prepared in a mixture of acetonitrile and toluene had a high binding capacity. The performance of microspheres was further assessed by equilibrium binding and kinetic adsorption experiments. The results showed that the apparent maximum adsorption reached up to 1.35 mg·g?1 within 10 min. Based on the dummy-template microspheres, a molecularly imprinted solid phase extraction-gas chromatography method was developed for the selective analysis of 2,4-D butyl ester in soil samples. The mean recoveries of 2,4-D butyl ester from blank soil samples ranged from 85.9 to 99.3% with relative standard deviations of 4.5–14.3% (n = 5). The limit of detection and the limit of quantification of 2,4-D butyl ester were 0.8 μg·kg?1 and 2.3 μg·kg?1, respectively.  相似文献   

2.
《Electroanalysis》2005,17(19):1789-1794
Electropolymerized membranes on gold electrodes doped with 2,4‐dichlorophenoxyacetic acid (2,4‐D) were prepared from a solution containing resorcinol, o‐phenylenediamine and 2,4‐D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interaction of 2,4‐D with the polymer matrix prior to and after the sensing experiments. The FTIR data indicate that 2,4‐D does not leach appreciably from the polymer matrix under experimental conditions employed for the sensing studies. The electrochemical current response for 2,4‐D is compared for the doped polymer‐coated and control polymer‐coated electrode. The response of the doped polymer‐electrode was dependent on increasing concentrations of 2,4‐D and 2,4‐dichlorophenol while unresponsive to benzoic acid.  相似文献   

3.
《Analytical letters》2012,45(15):2482-2492
The objective of this work was the development of reliable methods to determine 2,4-dinitrotoluene, a precursor to explosives. A complex between Fe(II) ion and 2,4-dinitrotoluene was formed in solution and characterized by ultraviolet-visible absorption spectroscopy using Job’s plots and attenuated total reflection-Fourier transform infrared spectroscopy. Surface modification of glassy carbon electrodes were performed with iron nanoparticles via electrochemical reduction of iron(II). The modified electrode was employed for the determination of 2,4-dinitrotoluene. Scanning electron micrographs showed that the iron nanoparticles were incorporated on the surface of glassy carbon electrode. The electrochemical determination of 2,4-dinitrotoluene was performed by cyclic voltammetry using the modified electrode. The iron modified electrode produced larger reduction currents than the unmodified electrode for the same concentration of 2,4-dinitrotoluene. Concentrations of 2,4-dinitrotoluene as low as 10 parts per billion were determined using the modified electrode.  相似文献   

4.
Lead/lead oxide Pb/PbO2 modified electrodes was prepared for electrocatalytic oxidation of agrochemicals including herbicidal 2,4-D (albar super) and pure 2,4-dichlorophenoxy acetic acid. The results of electrocatalytic oxidation process of the agrochemical solutions were expressed in terms of the remaining concentration and COD removal. The different operating conditions of treatment process were investigated including current density, pH, temperature, time of electrolysis, type of conductive electrolyte, and its specific conductance. This electrode gives good results for the removal of agrochemicals and COD. Also, the results showed the best conductive electrolytes is NaCl. This observation was attributed to the small size of Na+ and contribution of Cl? ion in formation of OCl?.  相似文献   

5.
An electrochemical sensor based on molecularly imprinted polypyrrole membranes is reported for the determination of 2,4-dichlorophenoxy acetic acid (2,4-D). The sensor was prepared by electropolymerization of pyrrole on a glassy carbon electrode in the presence of 2,4-D as a template. The template was removed by overoxidation at +1.3 V in buffer solution. The sensor can effectively improve the reductive properties of 2,4-D and eliminate interferences by other pesticides and electroactive species. The peak current at -0.78 V is linear with the concentration of 2,4-D from 1.0 to 10 µM, the detection limit is 0.83 µM (at 3σ), and the relative standard deviation is 3.9% (at 5.0 µM of 2,4-D; n?=?7). The method has been successfully applied to the determination of 2,4-D in environmental water samples, with recovery rates ranging from 92% to 108%.  相似文献   

6.
Electrochemical determination of 2,4-D at a mercury electrode   总被引:1,自引:0,他引:1  
An indirect electrochemical determination of 2,4-dichlorophenoxyacetic acid (2,4-D), has been presented. The method is based on the adsorption and desorption of 2,4-D on mercury electrode. Also, the electrochemical behavior of 2,4-D in aqueous solutions at different pH values and different 2,4-D concentrations were studied. A simple and rapid method has been developed for its extraction from water and soil. The subsequent determination was carried out by a tensammetric method. Three calibration curves could be obtained from different parts of voltammogram. Under the optimum conditions (pH = 2.3; Eacc = −1100 mV; tacc = 60 s; alternative current mode; ν = 40 mV s−1; pulse height = 20 mV; modulation frequency = 60 Hz; phase angle = 90°) the limit of detection was 50 μg L−1. The proposed method was applied to the determination of 2,4-D in real samples such as soil and water.  相似文献   

7.
以4-硝基苯酚、 2,4-二氯苯氧乙酸和3-氯丙基三乙氧基硅烷为原料, 经氧化偶合、 酰化、 酯化反应合成了共价结合模板分子2,4-二氯苯氧乙酸(2,4-D)的光响应性含有机硅的偶氮苯功能单体, 通过溶胶-凝胶法制备了光响应性的有机-无机杂化分子印迹聚合物(OIHMIP). 研究了该分子印迹聚合物光响应性能、 对2,4-D的吸附性能和选择识别及光控释放与吸收能力, 用原子力显微镜对其形貌进行了表征. 结果表明, 制得的OIHMIP具有规则的球形, 粒径介于150~200 nm之间. OIHMIP对2,4-D具有良好的吸附和选择识别能力, 在365和440 nm的紫外-可见光交替照射下, 可控制2,4-D的释放与吸收.  相似文献   

8.
实验发现,2,4-二氯苯氧基乙酸(2,4-D)经紫外光转化后与KMnO4在H2SO4介质中反应可产生化学发光。采用液相色谱-质谱联用技术(LC-MS)对2,4-D光降解产物进行分析,推断光降解主要生成了多酚类降解产物,如2-氯对苯二酚(CHQ)和4-氯邻苯二酚等。化学发光光谱研究发现,2,4-D经紫外光转化后,与KMnO4反应的发光波长为690 nm,与2,4-D的典型降解产物CHQ的化学发光光谱一致。此发光现象是氧化还原过程中生成的Mn?吸收反应所释放出的化学能成为激发态,再返回基态时产生的特征辐射峰。该反应体系可用于2,4-D的检测,当2,4-D浓度在0.01~10 mg/L范围内与发光强度呈良好的线性关系;检出限为3.0μg/L。  相似文献   

9.
《Analytical letters》2012,45(5):921-932
Abstract

A novel 2,4‐dichlorophenoxyacetate (2,4‐D) biosensor system was constructed with a reactor for microbial degradation and a flow cell based on a tyrosinase‐modified graphite electrode for product detection. The microorganism, isolated from the agricultural soil collected at northern Kyusyu Island and identified as Ralstonia sp. was employed as the 2,4‐D degrader. Immobilization was performed with a glass column packed with silica gel particles by circulating Luria‐Bertani medium containing 2,4‐D inoculated with the bacteria. The degradation capability of the immobilized cells packed in the reactor was confirmed by circulating a mineral salt medium containing 2,4‐D and monitoring the decrease in 2,4‐D content. The tyrosinase electrode was employed to monitor phenolic and catecholic compounds, since it could be presumed that 2,4‐dichlorophenol and 3,5‐dichlorocatechol could be produced as intermediates in the degradation of 2,4‐D by Ralstonia sp. The flow cell of three electrodes configuration was assembled by using the enzyme electrode as a working electrode. Consequently, amperometric response current could be observed by injecting 2,4‐D solution with phosphate buffer as the mobile phase at the applied potential of 0.5 V vs. Ag/AgCl. The sensitivity of the system was shown to depend on the composition of the mobile phase by comparing the sensitivities obtained with phosphate buffer and mineral salt medium as the mobile phase.  相似文献   

10.
A new label—laccase from the fungus Coriolus hirsutus—was applied for solid-phaseenzyme-linked immunosorbentassays of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). Two proposed assays are based on (1) competitive binding of antibody-laccase conjugate with immobilized 2,4-D-protein conjugate and 2,4-D in tested sample, and (2) competition of 2,4-D and 2,4-D-laccase conjugate for binding with immobilized antibodies. Kinetic and concentration dependencies for these reactions were studied, and the ELISAs were optimized in accordance with the data obtained. The elaborated systems perm it the detection of 2,4-D in concentrations down to 10–20ng/mL; time of the assays is 1.5–2 h. The main advantage of the laccase label, in comparison with the widely used peroxidase one, lies in the lack of hydrogen peroxide from substrate mixture, because dissolved oxygen plays the role of oxidizer.  相似文献   

11.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

12.
《Analytical letters》2012,45(13):1940-1957
Abstract

The preparation of a methacrylate polymer molecularly imprinted (MIP) with paracetamol (APAP) was performed. After extraction of the APAP template molecule, the MIPs were incorporated into a graphite–polyurethane (GPU) matrix, and the resulting composites were used to prepare modified electrodes intended to be used in APAP determination. The best results were found using a 2.5% MIP in the GPU electrode and a 500-µm MIP particle size. This electrode was used in the determination of APAP in pharmaceutical formulations, reaching a 6.7 × 10?8 mol L?1 limit of detection. The 2.5% MIP-GPU-modified electrode showed better sensitivity than the nonimprinted methacrylate GPU-modified electrodes. Interference of phenacetin in the APAP response decreased remarkably when the proposed electrode was used.  相似文献   

13.
A spray drying technique was applied to prepare composite microparticles of a water-insoluble herbicide, atrazine(AT) and a water-soluble herbicide 2,4-dichloro phenoxy acetic acid (2,4-D) for the purpose of improving the water solubility of AT. A homogenous mixture of an ethanol solution of AT and an aqueous 2,4-D solution at different ratios were spray dried using a laboratory scale spray drier. Quantitative elemental analysis suggested that the AT/2,4-D ratio in each composite microparticle was nearly the same as the desired formulation ratio. The resulting samples were characterized by powder x-ray diffractometry (XRD), differential scanning calorimetry (DSC), Fourier transform infra red (FT-IR) and scanning electron microscopy (SEM). It was found that the crystallinity of AT and 2,4-D were maintained in the composite particles. Moreover, the release of AT from dissolved composite microparticles was markedly improved because of an increase in the effective surface area following rapid dissolution of 2, 4 D. Hence, this study shows that it is possible to prepare AT-2,4-D composite microparticles using a laboratory scale spray drier and that this can improve the ability of AT to dissolve in water.  相似文献   

14.
The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8 × 104 M−1) and NIPA (K = 1.9 × 104 M−1), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0 × 102 M−1). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples.  相似文献   

15.
2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide used to control broadleaf weeds. It is also a threatening factor for not only aquatic life but also human health due to its genotoxicity and endocrine disruptive property. Herein, the interaction between 2,4-D and double stranded DNA was investigated by using single-use pencil graphite electrodes (PGE) in combination with electrochemical techniques. The detection mechanism was based on the monitoring of the changes at the guanine oxidation signal obtained before/after surface-confined interaction of 2,4-D and DNA at the surface of PGE. The electrochemical characterization of the interaction was studied by using microscopic and electrochemical techniques. The response obtained by interaction in the presence of another herbicide, glyphosate, which is widely used with 2,4-D for weed control, was compared to the one occurred in the presence of 2,4-D. Electrochemical monitoring of the interaction between the herbicide whose active molecule was 2,4-D and DNA was also investigated. The detection (LOD) and quantification limits (LOQ) for 2,4-D and the herbicide could be obtained in the linear concentration ranges of 30–70 µg/mL and 10–30 µg/mL, respectively and LOD and LOQ values were found to be 2.85 and 9.50 µg/mL for both 2,4-D and the herbicide. The sensitivity of the biosensor was calculated as 0.087 µA.mL / µg.cm2 .This is the first study in literature by means of not only voltammetric detection of 2,4-D and DNA interaction but also the herbicide-DNA interaction at the surface of PGE based on the changes at the guanine signal.  相似文献   

16.
A novel immunoassay format employing direct coating of small molecular hapten on microtiter plates is reported for the detection of atrazine and 2,4-dichlorophenoxyacetic (2,4-D). In this assay, the polystyrene surface of microtiter plates was first treated with an acid to generate -NO2 groups on the surface. Acid treated plates were further treated with 3-aminoprpyltriethoxysilane (APTES) to functionalize the plate surface with amino groups for covalent linkage to small molecular hapten with carboxyl groups. The modified plates showed significantly high antibody binding in comparison to plates coated with hapten-carrier protein conjugates and presented excellent stability as a function of the buffer pH and reaction time. The developed assay employing direct hapten coated plates and using affinity purified atrazine and 2,4-D antibodies demonstrated very high sensitivity, IC50 values for atrazine and 2,4-D equal to 0.8 ng mL−1 and 7 ng mL−1, respectively. The assay could detect atrazine and 2,4-D levels in standard water samples even at a very low concentration upto 0.02 and 0.7 ng mL−1 respectively in the optimum working range between 0.01 and 1000 ng mL−1 with good signal reproducibility (p values: 0.091 and 0.224 for atrazine and 2,4-D, respectively). The developed immunoassay format could be used as convenient quantitative tool for the sensitive screening of pesticides in samples.  相似文献   

17.
The roughened silver–palladium (Pd/Ag(r)) electrode was fabricated by a convenient metallic replacement reaction, and its electrocatalytic property towards reductive dechlorination of 2,4-Dichlorophenoxyacetic acid (2,4-D) in basic aqueous solution have been evaluated. Experimental evidence is presented that Pd/Ag(r) exhibited powerful electrocatalytic activity for dechlorination of 2,4-D. In addition, a new dechlorination mechanism of 2,4-D was proposed, in which the formation of adsorbed 2,4-D on Ag is a key step.  相似文献   

18.
In the present study, peanut shell, a green waste raw material, was used to prepare biochar (BC) and to obtain BC-supported nano-palladium/iron (BC-nPd/Fe) composites for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. Characterization analysis demonstrated that nPd/Fe particles were well dispersed on the BC surface with weakened magnetic properties. The average particle diameter and specific surface area of nPd/Fe were 101.3 nm and 6.7 m2 g−1, whereas the corresponding values of the BC-nPd/Fe materials were 88.8 nm and 14.8 m2 g−1, respectively. Several factors were found to influence the dechlorination of 2,4-D, including the weight ratio of BC to Fe, Pd loading ratio, initial solution pH, 2,4-D concentration, and reaction temperature. Dechlorination results indicated that the 2,4-D removal and phenoxyacetic acid (PA) generation rates were 44.1% and 20.1%, respectively, in the nPd/Fe system, and 100.0% and 92.1%, respectively, in the BC-nPd/Fe system. The dechlorination of 2,4-D was well described by the pseudo-first-order kinetic model (R2 > 0.97), and the observed rate constants kobs were 0.0042 min (nPd/Fe) and 0.0578 min (BC-nPd/Fe), respectively. The reaction mechanism indicated that the dechlorination hydrogenation was the main process to remove 2,4-D from water in the BC-nPd/Fe system. In addition, BC inhibited the formation of a passivation layer on the particle surface during the reaction, thus maintaining the high reactivity of BC-nPd/Fe. The easy preparation technique, high 2,4-D dechlorination capacity, and mild reaction conditions suggest that BC-nPd/Fe may be a promising alternative composite to remove 2,4-D from water.  相似文献   

19.
This study aimed at elucidating the interaction mechanism between an imprinted polymer and its template in aqueous environment with thermodynamic aspects. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model template to imprint a co-polymer of 4-vinylpyridine (4-VP) and ethyleneglycol dimethacrylate. Equilibrium binding isotherm analysis and isothermal titration microcalorimetry were used to quantify the contribution of enthalpy and entropy to the binding process, identify the nature of the interactions involved and confirm the existence of binding pockets with shape-complementarity to the template. For the binding process of 2,4-D to the imprinted polymer, we postulate three subprocesses: (1) dehydration of the binding pocket and of the 2,4-D, (2) adsorption of 2,4-D, and (3) rearrangement of the water molecules from the dehydration process. We found that binding in aqueous environment was due to the cumulative effect of pi-stacking and electrostatic interactions between the template and the functional monomers. At pH<6, entropy is the dominating driving force, while at pH>6 where the highest difference in binding between the imprinted and a non-imprinted reference polymer was observed, the enthalpy change accounts for most of the binding free energy. The developed microcalorimetric method sheds light on the binding mechanism of analyte molecules with imprinted polymers, in particular if the polymers are used in aqueous solvents.  相似文献   

20.
《Analytical letters》2012,45(15):2973-2982
Abstract

A simple microtiter particle agglutination inhibition (MPAI) assay for detection of 2,4-dichlorphenoxyacetic acid (2,4-D) has been developed on the basis of coloured polyacrolein latex particles sensitized with monoclonal antibodies to 2,4-D. MPAI test has been applied to the quantification of 2,4-D in water and extracts from grain and compared with the polarisation fluoroimmunoassay. The detection limit of 2,4-dichlorphenoxyacetic acid in MPAI was 0.6 μg/1 which was about two orders higher than that of polarisation fluoroimmunoassay. The cross-reactivity of various structurally related substances was less than 10.%. Good correlation of MPAI and polarisation fluoroimmunoassay was shown when testing 2,4-D in the extracts from grain. MPAI assay is rapid, robust, easy to perform, doesn't need any instrumentation and specially trained personnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号