首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self‐assembly of luminescent moieties into porous metal–organic frameworks (MOFs) has generated many luminescent platforms for probing volatile organic molecules (VOMs). However, most of those explored thus far have only been based on the luminescence intensity of one transition, which is not efficient for probing different VOMs. We have synthesized a luminescent MOF material containing 1D nanotube channels, and further developed a luminescent dye@MOF platform to realize the probing of different VOMs by tuning the energy transfer efficiency between two different emissions. The dye@MOF platform exhibits excellent fingerprint correlation between the VOM and the emission peak‐height ratio of ligand to dye moieties. The dye@MOF sensor is self‐calibrating, stable, and instantaneous, thus the approach should be a very promising strategy to develop luminescent materials with unprecedented practical applications.  相似文献   

2.
金属有机框架化合物(MOFs)是一类备受关注的多功能杂化材料,结构的多样性使其表现出各种发光性能。尤其是环境友好、使用寿命长、效率高的白光MOFs材料的出现为新型发光MOFs的设计和制备提供了契机。我们旨在总结白光MOFs的最新研究进展,着重对其合成方法及应用进行综述,主要包括镧系离子共掺杂、镧系元素封装或有机分子捕获等获得可调控的白光MOFs的方法及其在温度、分子和金属离子传感器等领域的潜在应用。同时,针对白光MOFs材料面临的挑战和未来发展也进行了梳理。以期引起设计和构建新型发光MOFs的研究人员的关注与兴趣。  相似文献   

3.
This review summarized the recent progress on photoluminescence metal-organic framework sensors consisting of dual-emission centers, which can amplify and self-calibrate the emission signals for probing various small analytes.  相似文献   

4.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

5.
Metal–organic frameworks(MOFs) are a fascinating class of crystalline materials constructed from selfassembly of metal cations/clusters and organic ligands. Both metal and organic components can be used to generate luminescence, and can further interact via antenna effect to increase the quantum yield,providing a versatile platform for chemical sensing based on luminescence emission. Moreover, MOFs can be miniaturized to nanometer scale to form nano-MOF(NMOF) materials, which exhibit many advantages over conventional bulk MOFs in terms of the facile tailorability of compositions, sizes and morphologies, the high dispersity in a wide variety of medium, and the intrinsic biocompatibility. This review will detail the development of NMOF materials as chemical sensors, including the synthetic methodologies for designing NMOF sensory materials, their luminescent properties and potential sensing applications.  相似文献   

6.
Considering size effect and functionalized pore interaction dyes guests and MOFs hosts, 4-aminonaphthalimide was successfully introduced into the pore of LnMOF for the first time and constructed 4-ANA⊂LnMOF luminescent composites with excellent dual-emission properties. A series of temperature-dependent luminescence test results show that 4-ANA⊂Gd4L3 can be used as a reversible ratiometric luminescent temperature sensor. The functional construction method provides ideas for the development of clear purpose novel dual-emission dye⊂LnMOF ratiometric luminescent sensors.  相似文献   

7.
金属-有机骨架材料(MOFs)是一类由金属离子与有机配体之间的配位自组装形成的新型多孔复合材料。因其具有高比表面积、可调的尺寸、拓扑结构多样性、合成简便、有机基团易于功能化等优点使其在生物分析、成像、传感、催化、气体存储与分离以及药物运载等领域具有广泛的应用前景。这里通过简要介绍MOFs的研究背景,基于MOFs孔径的药物装载策略以及MOFs药物释放的刺激响应方式,阐述MOFs作为药物递送载体的最新进展,为后期药物载体的设计提供参考。  相似文献   

8.
All‐organic dyes have shown promising potential as an effective sensitizer in dye‐sensitized solar cells (DSSCs). The design concept of all‐organic dyes to improve light‐to‐electric‐energy conversion is discussed based on the absorption, electron injection, dye regeneration, and recombination. How the electron‐donor–acceptor‐type framework can provide better light harvesting through bandgap‐tuning and why proper arrangement of acceptor/anchoring groups within a conjugated dye frame is important in suppressing improper charge recombination in DSSCs are discussed. Separating the electron acceptor from the anchoring unit in the donor–acceptor‐type organic dye would be a promising strategy to reduce recombination and improve photocurrent generation.  相似文献   

9.
Synergistic effects arising from the conjugation of organic dyes onto non‐luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well‐known pH‐insensitive dye, tetramethyl‐rhodamine (TAMRA), to pH‐insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH‐insensitive dyes, this pH‐dependent dimerization can also enhance the pH sensitivity of fluorescein, a well‐known pH‐sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges.  相似文献   

10.
Using porous metal–organic frameworks (MOFs) as supports for immobilizing dyes as photocatalysts is an important strategy to construct a molecule-level photoreactor. Rational assembly of a heterogeneous photoreactor (photosensitizer + porosity + catalysis) requires individually tailoring based on the structure and function of the dyes and MOFs. Herein we report a facile, one-pot, room-temperature (RT) aqueous solution method to precisely embed an iodine-substituted boron dipyrromethene (I2-BODIPY) photosensitizer within zeolitic imidazolate framework-8 (ZIF-8) cavity. The resultant I2-BODIPY@ZIF-8 composite not only maintained the nanoporous cavity and outstanding stability inherited from ZIF-8 material but also possessed excellent visible-light harvesting property and high singlet oxygen production ability originated from I2-BODIPY dye. Combining the advantages of ZIF-8 material and I2-BODIPY dye, the composite is highly active as a visible light–driven photocatalyst for selective oxidization of aryl sulfides and a sulfur mustard simulant, 2-chloroethyl ethyl sulfide, at RT without overoxidation. Owing to its heterogeneous nature, the composite can be readily recycled at least five times for the oxidization without obvious loss of the catalytic activity.  相似文献   

11.
Ionic metal–organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion‐exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water‐stable anionic mesoporous MOF based on uranium and featuring tbo‐type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO2 activation, a record‐high Brunauer‐Emmett‐Teller (BET) surface area (2100 m2 g?1) for actinide‐based MOFs has been obtained. Most importantly, however, this new uranium‐based MOF is water‐stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.  相似文献   

12.
张安  张娟 《色谱》2022,40(11):966-978
基于在碱性环境下硼酸能与顺式二醇化合物可逆共价结合形成稳定的五元或六元环酯,而在酸性环境下环酯开环释放顺式二醇化合物这一特性,设计合成高效、高选择性、高富集性能的硼亲和材料的研究备受关注。近年来,许多研究工作者合成了各种类型的硼亲和材料,应用于高选择性富集顺式二醇化合物。金属有机骨架(MOFs)和共价有机骨架(COFs)由于具有孔径可调、高孔隙率、高比表面积、骨架结构可调和化学及热稳定性良好等特点,被广泛应用于色谱分离和样品前处理领域。为赋予MOFs和COFs材料对顺式二醇化合物的富集选择性,各种不同结构和不同种类的硼酸修饰的MOFs和COFs被合成出来。该综述主要是对近几年来80余篇源于科学引文索引关于硼酸功能化MOFs和COFs的种类、合成方法及其应用文章的总结,包括“金属配体-片段共组装”“合成后修饰”和“自下而上”的硼酸功能化多孔材料的修饰策略,以及硼酸功能化MOFs和COFs的种类,介绍了其在化学分析和生物分析领域的发展概况和应用前景,客观评价了硼酸功能化MOFs和COFs的区别和优缺点。该文旨在让研究人员能够充分了解近几年硼酸功能化多孔有机骨架材料的研究现状、掌握合成思路和方法,为其应用提供一定的理论指导和技术支撑,为加快硼酸功能化多孔有机骨架材料的商业化脚步贡献绵薄之力。  相似文献   

13.
肖帆  崔元靖  钱国栋 《应用化学》2018,35(9):1113-1125
金属-有机框架材料(metal-organic frameworks,MOFs)是一类由金属离子或金属离子簇与有机配体自组装而成的杂化多孔材料。 极高的比表面积和孔隙率,组成和结构可调节等特点赋予该材料灵活的设计性和丰富的功能性。 金属-有机框架材料的金属离子、有机配体和装载的客体分子等皆可作为发光中心,并能对离子或小分子产生特异性荧光响应,因此在荧光探测方面有广泛应用。 本文主要综述了近年来金属-有机框架材料在荧光探测方向的研究进展以及应用前景。  相似文献   

14.
15.
Metal‐organic frameworks (MOFs) are an emerging class of porous materials with attractive properties, however, their practical applications are heavily hindered by their fragile nature. We report herein an effective strategy to transform fragile coordination bonds in MOFs into stable covalent organic bonds under mild annealing decarboxylative coupling reaction conditions, which results in highly stable organic framework materials. This strategy successfully endows intrinsic framework skeletons, porosity and properties of the parent MOFs in the daughter organic framework materials, which exhibit excellent chemical stability under harsh catalytic conditions. Therefore, this work opens a new avenue to synthesize stable organic framework materials derived from MOFs for applications in different fields.  相似文献   

16.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.  相似文献   

17.
The secondary building units in metal–organic frameworks (MOFs) are commonly well‐defined metal–oxo clusters or chains with very limited structural strain. Herein, the structurally deformable haloplumbate units that are often observed in organolead halide perovskites have been successfully incorporated into MOFs. The resultant materials are a rare class of isoreticular MOFs exhibiting large Stokes‐shifted broadband white‐light emission, which is probably induced by self‐trapped excitons from electron–phonon coupling in the deformable, zigzag [Pb2X3]+ (X=Cl, Br, or I) chains. In contrast, MOFs with highly symmetric, robust haloplumbate chains only exhibit narrow UV–blue photoemission. The designed MOF‐based intrinsic white‐light photoemitters have a number of advantages over hybrid inorganic–organic perovskites in terms of stability and tunability, including moisture resistance, facile functionalization of photoactive moieties onto the organic linkers, introduction of luminescent guests.  相似文献   

18.
能源问题一直是关乎人类命运的重要问题,光催化制氢被认为是有望解决这一问题的潜在途径之一.金属有机框架(MOFs)由于其多孔、高比表面积、带隙可调等特性,在光催化制氢方面得到了广泛关注.我们综述了近些年来在金属-有机骨架材料光催化制氢领域的各种改性方法 ,包括修饰有机连接配体、修饰金属中心、金属纳米粒子沉积、染料敏化与其他功能材料结合等.概括了改性后的MOFs光催化制氢性能,指出了MOFs基光催化制氢存在的问题和可能的解决思路,并展望了MOFs基光催化制氢剂的绿色未来.  相似文献   

19.
《中国化学快报》2021,32(12):3890-3894
Rhodamine dyes have been widely employed in biological imaging and sensing. However, it is always a challenge to design rhodamine derivatives with huge Stokes shift to address the draconian requirements of single-excitation multicolor imaging. In this work, we described a generally strategy to enhance the Stokes shift of rhodamine dyes by completely breaking their electronic symmetry. As a result, the Stokes shift of novel rhodamine dye DQF-RB-Cl is up to 205 nm in PBS, which is the largest in all the reported rhodamine derivatives. In addition, we successfully realized the single excitation trichromatic imaging of mitochondria, lysosomes and cell membranes by combining DQF-RB-Cl with commercial lysosomal targeting probe Lyso-Tracker Green and membrane targeting dye Dil. This is the organic synthetic dyes for SLE-trichromatic imaging in cells for the first time. These results demonstrate the potential of our design as a useful strategy to develop huge Stokes shift fluorophore for bioimaging.  相似文献   

20.
The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid‐state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0–1 transition governed by the Franck–Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0–1, 0–2, 0–3, and even 0–4) bands spanning the entire emission spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号