首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray crystallography and NMR spectroscopy provide the only sources of experimental data from which protein structures can be analyzed at high or even atomic resolution. The degree to which these methods complement each other as sources of structural knowledge is a matter of debate; it is often proposed that small proteins yielding high quality, readily analyzed NMR spectra are a subset of those that readily yield strongly diffracting crystals. We have examined the correlation between NMR spectral quality and success in structure determination by X-ray crystallography for 159 prokaryotic and eukaryotic proteins, prescreened to avoid proteins providing polydisperse and/or aggregated samples. This study demonstrates that, across this protein sample set, the quality of a protein's [15N-1H]-heteronuclear correlation (HSQC) spectrum recorded under conditions generally suitable for 3D structure determination by NMR, a key predictor of the ability to determine a structure by NMR, is not correlated with successful crystallization and structure determination by X-ray crystallography. These results, together with similar results of an independent study presented in the accompanying paper (Yee, et al., J. Am. Chem. Soc., accompanying paper), demonstrate that X-ray crystallography and NMR often provide complementary sources of structural data and that both methods are required in order to optimize success for as many targets as possible in large-scale structural proteomics efforts.  相似文献   

2.
Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are the two main methods for protein three-dimensional structure determination at atomic resolution. According to the protein structures deposited in the Protein Data Bank, X-ray crystallography has become the dominant method for structure determination, particularly for large proteins and complexes. However, with the developments of isotope labeling, increase of magnetic field strength, common use of a cryogenic probe, and ingenious pulse sequence design, the applications of NMR spectroscopy have expanded in biological research, especially in characterizing protein dynamics, sparsely populated transient structures, weak protein interactions, and proteins in living cells at atomic resolution, which is difficult if not impossible by other biophysical methods. Although great advances have been made in protein NMR spectroscopy, its applications in protein therapeutics, which represents the fastest growing segment of the pharmaceutical industry, are still limited. Here we review the recent advances in the use of NMR spectroscopy in studies of large proteins or complexes, posttranslation modifications, weak interactions, and aggregation, and in-cell NMR spectroscopy. The potential applications of NMR spectroscopy in protein therapeutic assays are discussed.  相似文献   

3.
High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low solubility. Here we describe the structure determination of microcrystalline ubiquitin using 2D (13)C-(13)C correlation spectroscopy under magic angle spinning conditions. High-resolution (13)C spectra have been acquired from hydrated microcrystals of site-directed (13)C-enriched ubiquitin. Inter-residue carbon-carbon distance constraints defining the global protein structure have been evaluated from 'dipolar-assisted rotational resonance' experiments recorded at various mixing times. Additional constraints on the backbone torsion angles have been derived from chemical shift analysis. Using both distance and dihedral angle constraints, the structure of microcrystalline ubiquitin has been refined to a root-mean-square deviation of about 1 A. The structure determination strategies for solid samples described herein are likely to be generally applicable to many proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy.  相似文献   

4.
An NMR-based alternative to traditional X-ray crystallography and NMR methods for structure-based drug design is described that enables the structure determination of ligands complexed to virtually any biomolecular target regardless of size, composition, or oligomeric state. The method utilizes saturation transfer difference (STD) NMR spectroscopy performed on a ligand complexed to a series of target samples that have been deuterated everywhere except for specific amino acid types. In this way, the amino acid composition of the ligand-binding site can be defined, and, given the three-dimensional structure of the protein target, the three-dimensional structure of the protein-ligand complex can be determined. Unlike earlier NMR methods for solving the structures of protein-ligand complexes, no protein resonance assignments are necessary. Thus, the approach has broad potential applications--especially in cases where X-ray crystallography and traditional NMR methods have failed to produce structural data. The method is called SOS-NMR for structural information using Overhauser effects and selective labeling and is validated on two protein-ligand complexes: FKBP complexed to 2-(3'-pyridyl)-benzimidazole and MurA complexed to uridine diphosphate N-acetylglucosamine.  相似文献   

5.
高通量蛋白质结晶及其在药物设计中的应用   总被引:3,自引:0,他引:3  
针对靶标蛋白质的小分子药物研究中,蛋白质的三维结构起到了非常重要的作用.最近高通量蛋白质结晶的快速发展为蛋白质结构的快速确定和药物先导的发现提供了许多新的机会.本文综述了高通量蛋白质结晶及其在新药设计中应用的最新进展。  相似文献   

6.
Mass spectrometry (MS)-based proteomics provides unprecedented opportunities for understanding the structure and function of proteins in complex biological systems; however, protein solubility and sample preparation before MS remain a bottleneck preventing high-throughput proteomics. Herein, we report a high-throughput bottom-up proteomic method enabled by a newly developed MS-compatible photocleavable surfactant, 4-hexylphenylazosulfonate (Azo) that facilitates robust protein extraction, rapid enzymatic digestion (30 min compared to overnight), and subsequent MS-analysis following UV degradation. Moreover, we developed an Azo-aided bottom-up method for analysis of integral membrane proteins, which are key drug targets and are generally underrepresented in global proteomic studies. Furthermore, we demonstrated the ability of Azo to serve as an “all-in-one” MS-compatible surfactant for both top-down and bottom-up proteomics, with streamlined workflows for high-throughput proteomics amenable to clinical applications.  相似文献   

7.
Nucleic acid X-ray crystallography via direct selenium derivatization   总被引:1,自引:0,他引:1  
X-ray crystallography has proven to be an essential tool for structural studies of bio-macromolecules at the atomic level. There are two major bottle-neck problems in the macromolecular crystal structure determination: phasing and crystallization. Although the selenium derivatization is routinely used for solving novel protein structures through the MAD phasing technique, the phase problem is still a critical issue in nucleic acid crystallography. The background and current progress of using direct selenium-derivatization of nucleic acids (SeNA) to solve the phase problem and to facilitate nucleic acid crystallization for X-ray crystallography are summarized in this tutorial review.  相似文献   

8.
The most reliable method to determine the absolute configuration of chiral molecules is X-ray crystallography, but small molecules can be difficult to crystallize. We report rapid co-crystallization of tetraaryladamantanes with small molecules as different as n-decane to nicotine to produce crystals for X-ray analysis and the assignment of absolute configuration when the molecules are chiral. A screen of 52 diverse compounds gave inclusion in co-crystals for 88 % of all cases and a high-resolution structure in 77 % of cases. Furthermore, starting from three milligrams of analyte, a combination of NMR spectroscopy and X-ray crystallography produced a full structure in less than three days using an adamantane crystallization chaperone that encapsulates the analyte at room temperature.  相似文献   

9.
Intrinsically disordered/unstructured proteins exist in a highly flexible conformational state largely devoid of secondary structural elements and tertiary contacts. Despite their lack of a well defined structure, these proteins often fulfill essential regulatory functions. The intrinsic lack of structure confers functional advantages on these proteins, allowing them to adopt multiple conformations and to bind to different binding partners. The structural flexibility of disordered regions hampers efforts solving structures at high resolution by X-ray crystallography and/or NMR. Removing such proteins/regions from high-throughput structural genomics pipelines would be of significant benefit in terms of cost and success rate. In this paper we outline the theoretical background of structural disorder, and review bioinformatic predictors that can be used to delineate regions most likely to be amenable for structure determination. The primary focus of our review is the interpretation of prediction results in a way that enables segmentation of proteins to separate ordered domains from disordered regions.  相似文献   

10.
High‐resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non‐uniform sampling (NUS) of 3D heteronuclear‐resolved [1H,1H]‐NOESY data yielded two‐ to three‐fold savings of instrument time for structure determinations of soluble proteins. With the 152‐residue protein NP_372339.1 from Staphylococcus aureus and the 71‐residue protein NP_346341.1 from Streptococcus pneumonia we show that high‐quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data.  相似文献   

11.
Mass spectrometry (MS)‐based proteomics provides unprecedented opportunities for understanding the structure and function of proteins in complex biological systems; however, protein solubility and sample preparation before MS remain a bottleneck preventing high‐throughput proteomics. Herein, we report a high‐throughput bottom‐up proteomic method enabled by a newly developed MS‐compatible photocleavable surfactant, 4‐hexylphenylazosulfonate (Azo) that facilitates robust protein extraction, rapid enzymatic digestion (30 min compared to overnight), and subsequent MS‐analysis following UV degradation. Moreover, we developed an Azo‐aided bottom‐up method for analysis of integral membrane proteins, which are key drug targets and are generally underrepresented in global proteomic studies. Furthermore, we demonstrated the ability of Azo to serve as an “all‐in‐one” MS‐compatible surfactant for both top‐down and bottom‐up proteomics, with streamlined workflows for high‐throughput proteomics amenable to clinical applications.  相似文献   

12.
Viral membrane proteins are prime targets in combatting infection. Still, the determination of their structure remains a challenge, both with respect to sample preparation and the need for structural methods allowing for analysis in a native‐like lipid environment. Cell‐free protein synthesis and solid‐state NMR spectroscopy are promising approaches in this context, the former with respect to its great potential in the native expression of complex proteins, and the latter for the analysis of membrane proteins in lipids. Herein, we show that milligram amounts of the small envelope protein of the duck hepatitis B virus (DHBV) can be produced by cell‐free expression, and that the protein self‐assembles into subviral particles. Proton‐detected 2D NMR spectra recorded at a magic‐angle‐spinning frequency of 110 kHz on <500 μg protein show a number of isolated peaks with line widths comparable to those of model membrane proteins, paving the way for structural studies of this protein that is homologous to a potential drug target in HBV infection.  相似文献   

13.
Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a "combination" of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.  相似文献   

14.
Nuclear magnetic resonance (NMR) crystallography—an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods—has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29Si NMR spectrum and a single 2D 29Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone.  相似文献   

15.
The title compound is shown by X-ray crystallography and NMR spectroscopy to exist both in the solid state and in solution as such. Deuterium-induced shifts confirm the phenylamino structure for 2-phenylaminopyridine.  相似文献   

16.
Lanthanide-binding tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography, and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β (IL1β) and varied the length of the spacer between the LBT and the protein (denoted 1?3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing the 1H?15N heteronuclear single-quantum coherence NMR spectra with that of the wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated on the basis of RDCs and pseudocontact shifts. A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modeling.  相似文献   

17.
18.
The three-dimensional conformation of a protein is central to its biological function. The characterisation of aspects of three-dimensional protein structure by mass spectrometry is an area of much interest as the gas-phase conformation, in many instances, can be related to that of the solution phase. Travelling wave ion mobility mass spectrometry (TWIMS) was used to investigate the biological significance of gas-phase protein structure. Protein standards were analysed by TWIMS under denaturing and near-physiological solvent conditions and cross-sections estimated for the charge states observed. Estimates of collision cross-sections were obtained with reference to known standards with published cross-sections. Estimated cross-sections were compared with values from published X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy structures. The cross-section measured by ion mobility mass spectrometry varies with charge state, allowing the unfolding transition of proteins in the gas phase to be studied. Cross-sections estimated experimentally for proteins studied, for charge states most indicative of native structure, are in good agreement with measurements calculated from published X-ray and NMR structures. The relative stability of gas-phase structures has been investigated, for the proteins studied, based on their change in cross-section with increase in charge. These results illustrate that the TWIMS approach can provide data on three-dimensional protein structures of biological relevance.  相似文献   

19.
A significant fraction of the proteins encoded by the human and other genomes appears to be significantly unfolded in vitro. This will undoubtedly hamper attempts to characterize their structure by classical crystallographic or solution NMR methods. Here we show that encapsulation of a metastable protein within the restricted volume a reverse micelle can be used to force fold the protein and allow its characterization by modern methods of NMR spectroscopy. This may have significant utility in the context of structural proteomics. In addition, variation of the inner volume of the reverse micelle can be used to probe the character of the manifold of unfolded states.  相似文献   

20.
Ph1500 is a homohexameric, two-domain protein of unknown function from the hyperthermophilic archaeon Pyrococcus horikoshii. The C-terminal hexamerization domain (Ph1500C) is of particular interest, as it lacks sequence homology to proteins of known structure. However, it resisted crystallization for X-ray analysis, and proteins of this size (49 kDa) present a considerable challenge to NMR structure determination in solution. We solved the high-resolution structure of Ph1500C, exploiting the hyperthermophilic nature of the protein to minimize unfavorable relaxation properties by high-temperature measurement. Thus, the side chain assignment (97%) and structure determination became possible at full proton density. To our knowledge, Ph1500C is the largest protein for which this has been achieved. To minimize detrimental fast water exchange of amide protons at increased temperature, we employed a strategy where the temperature was optimized separately for backbone and side chain experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号