首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon monoxide dissociative adsorption was studied over silica-supported platinum, rhodium and Pt-Rh alloy catalysts, by Reversed Flow-Gas Chromatography. Using appropriate mathematical analysis physicochemical quantities such as fractional catalytic conversions of CO to CO2, as well as rate constants for the adsorption, desorption and surface reaction, describing the dissociative adsorption of CO, were determined. From the variation of the above parameters against the nature of the studied catalysts (Rh content) useful conclusions concerning the mechanism of CO dissociative adsorption were extracted.  相似文献   

2.
Summary Catalytic fractional conversions of carbon monoxide to carbon dioxide over Pt−Rh alloy catalysts in the presence of excess oxygen, under steady-state or non steady-state conditions, as well as corresponding rate constants for the CO oxidation reaction were measured by using the reversed-flow gas chromatographic technique. From the variation of the conversions with temperature, maximum values of conversions were found, which depend on the catalysts nature (Pt content), while from the variation of the rate constants with temperature, activation energies for the CO oxidation reaction were determined, which also depend on the catalyst Pt content. The results suggest a synergism between Pt and Rh in the Pt−Rh bimetallic catalysts in accordance with previous works, showing that reversed-flow gas chromatography can be used with simplicity and accuracy for the kinetic study of the CO oxidation reaction, which is of technological importance for the control of air pollution.  相似文献   

3.
Selective CO oxidation (SCO) has attracted scientific and technological interest due to its application to the operation of proton electrolyte membrane fuel cells (PEM-FCs). CO adsorption, being an elementary step of SCO, is studied over silica supported monometallic Rh and Rh0.50 + Pt0.50 alloy catalysts, under various hydrogen atmospheres, namely: 25% H2 + 75% He, 50% H2 + 50% He and 75% H2 + 25% He carrier gas mixture compositions. The investigation of CO adsorption is done by utilizing reversed-flow gas chromatography (RF-GC). As a result rate constants for the adsorption (k1), desorption (k(-1)) and irreversible CO binding (k2) over the studied catalysts as well as the respective activation energies are determined. The variation of the rate constants and the activation energies against the nature of the used catalyst (monometalic or alloy) and the amount of hydrogen in the carrier gas gives useful information for the selectivity as well as the activity of CO oxidation over group VIII noble metals. At low temperatures and under H2-rich conditions compatible with the operation of PEM fuel cells the activity of the monometallic and the alloy catalysts is expected to be similar, however the selectivity of Rh0.50 + Pt0.50 alloy catalyst is expected to be higher, making Pt-Rh alloy catalyst as a better candidate for CO preferential oxidation (PROX). The low energy barrier values found in the present work, most likely are referred to high surface amounts of CO. The desorption barriers determined are in any case much lower than the respective activation energies found for CO desorption in the absence of hydrogen indicating a H2-induced desorption, which can explain the observed in the literature rate enhancement of SCO oxidation.  相似文献   

4.
A new simple method is developed for measuring surface diffusion coefficients Ds of gases adsorbed on heterogeneous surfaces, using the reversed-flow version of inverse gas chromatography. The Ds values are found in a time-resolved way, together with the corresponding adsorption energy values, the local adsorbed concentrations, and the local adsorption isotherm values. A relative dynamic adsorption rate constant, an adsorption/desorption rate constant, and a surface reaction rate constant are also found in the same experiment, together with the total diffusion coefficient of the gas in the solid bed. The method has been applied for carbon monoxide, oxygen gas, and carbon dioxide as adsorbates on 75% Pt+25% Rh catalyst supported on SiO2, at 593.8 K.  相似文献   

5.
In the present work, the novel methodology of the inverse gas chromatographic technique of reversed-flow gas chromatography (RF-GC) was applied to the well-studied catalytic oxidation of carbon monoxide over silica supported Pt, Rh and Pt-Rh alloy catalysts. Adsorption energies, local isotherms, local monolayer capacities, surface diffusion coefficients, lateral interaction energies and energy distribution functions are simultaneously determined in a single experiment. The variation of the determined physicochemical parameters against the nature of the studied catalysts (Pt content) is consistent with the observed catalytic activity. The energy distribution functions, estimated by means of RF-GC, give useful information about the "topography" and the nature of the active sites on the catalyst surface, similar to those of experimental techniques, such as Thermal Desorption Spectroscopy studies of the adsorption of CO on group VIII noble metal surfaces. The experimentally found results explain the superior activity of Pt0.25 + Rh0.75 alloy, in comparison to that of the pure Pt and Rh catalysts.  相似文献   

6.
The surface state of Rh/MgO catalysts modified with Co, Ni, Fe, or CeO(2) after the reduction and partial oxidation pretreatments as well as during the catalytic partial oxidation of methane has been investigated by FTIR of adsorbed CO. The results of CO adsorption on the reduced catalysts suggest the formation of Rh-M alloy on Rh-M/MgO (M = Co, Ni, Fe) and Rh particles partially covered with reduced ceria on Rh-CeO(2)/MgO. The strength of CO adsorption on Rh/MgO is weakened by the modification with Co, Ni, Fe, or CeO(2). Partial oxidation pretreatment of Rh/MgO leads to a significant decrease in the CO adsorption due to the oxidation of Rh. In contrast, on partially oxidized Rh-M/MgO (M = Co, Ni, Fe) and Rh-CeO(2)/MgO, the preferential oxidation of the surface M atoms or reduced ceria maintains the metallic Rh and preserves the CO adsorbed on the surface Rh atoms. The CO adsorption during the reaction of catalytic partial oxidation of methane on Rh/MgO and Rh-Ni/MgO is similar to that on the reduced catalysts. On the other hand, the CO adsorption during the reaction on Rh-Co/MgO, Rh-Fe/MgO, and Rh-CeO(2)/MgO is different from that on the reduced catalysts, and this is related to the structural change of these catalysts during the reaction.  相似文献   

7.
The isotopic exchange of CO adsorbed on Pt(111) was studied using polarization modulation IR reflection absorption spectroscopy (PM-IRRAS) and temperature programmed desorption. It was found that the rate constants for the exchange reaction are much higher than would be expected from previous investigations of CO adsorbed on Pt nanoparticles. The adsorption of CO on Pt(111) under elevated pressures of CO and H(2) was also studied using PM-IRRAS. It was seen that CO pressures above 1 mbar lead to a shift in the absorption peak arising from CO adsorbed on a bridge site from 1850 to 1875 cm(-1). Exposing the CO-covered Pt(111) surface to 1000 mbar H(2) did not lead to any significant desorption of CO at room temperature, whereas at 363 K H(2) exposure did lead to a significant desorption of CO, due to the increased chemical potential of H(2). In a mixture of CO and H(2) with partial pressures of 0.01 mbar and 1000 mbar, respectively, no significant effect of H(2) on the PM-IRRAS spectrum was seen at temperatures below 423 K.  相似文献   

8.
运用电化学循环伏安(CV)和原位红外反射光谱(in situ FTIRS)研究了中性介质中L-丝氨酸在Pt电极上的解离吸附和氧化过程. 结果表明, 在中性溶液中, 以两性离子形式存在的丝氨酸可以在很低的电位下(-0.6 V, vs. SCE)在Pt电极表面发生解离吸附, 生成强吸物种一氧化碳(COL)、(COB)和氰负离子(CN-). 研究结果还表明, 当电位低于0.7 V(vs. SCE)时, CN-能稳定存在于电极表面, 抑制丝氨酸的进一步反应. 在更高电位时则主要为丝氨酸分子的氧化过程.  相似文献   

9.
The possibility of using current transients and open-circuit potential for correctly calculating a double-layer correction for charges spent for electrooxidation of adsorbed carbon monoxide is considered. On the basis of electrochemical measurements of adsorption of CO on electrolytic deposits of Pt and Rh in solutions of H2SO4, H2SO4 + HCl, and HCl, an estimate of the magnitude of adsorption of CO is performed with allowance made for a correct double-layer correction. The obtained values are compared with similar literature data for smooth Pt and Rh, and possible reasons for the established differences are discussed.  相似文献   

10.
钟起玲  王小聪  章磊  张小红  向娟  任斌  田中群 《化学学报》2003,61(12):1960-1964
采用循环伏安法和电化学原位表面增强拉曼光谱(SERS)技术研究甲酸的解离 及附与氧化行为。首次报道了甲酸吸附、解离和氧化的电化学原位SERS谱,发现甲 酸在粗糙铂电极上能自发解离吸附;首欠成功地获得了粗糙铂电极上甲酸吸附解离 的强吸附中间体CO和活性中间体COOH的表面增强拉曼光谱,同时首次检测到甲酸氧 化最终产物CO_2的拉曼光谱信号,从分子水平证实甲酸解离吸附反应的双途径机理 。  相似文献   

11.
Polymer electrolyte fuel cells constitute one of the most important efficiency energy converters for non-centralised uses. However, the use of fuels arising from reformate processes significantly lowers the current efficiency because of anodic catalytic poison coming from adsorbed carbon monoxide (COad). In this work, the influence of the addition of hydrogen peroxide in the flow current is studied, considering the adsorption and electrochemical oxidation of carbon monoxide on carbon-supported Pt (20% Pt/Vulcan) and Pt:Ru (1:1, 20% Pt:Ru/Vulcan) catalysts in 2 M sulphuric acid. The investigation was conducted applying cyclic voltammetry and on-line differential electrochemical mass spectrometry. A series of experiments has been performed to investigate the influence of the temperature as well as the time of contact and the concentration of hydrogen peroxide. Oxidation of COad to carbon dioxide occurs at lower potentials in the presence of hydrogen peroxide. Moreover, it is possible to remove ca. 70% of COad on Pt/C electrodes. On the other hand, for PtRu/C electrodes, similar charge values to those of Pt/C electrodes were obtained for the CO stripping, but the process occurs at more negative potentials. In this case, the effect of partial desorption for COad by interaction with hydrogen peroxide is added to the bifunctional mechanism usually considered for this alloy. This paper is dedicated to Prof. Francisco Nart, in memoriam.  相似文献   

12.
CO(2) reduction and CO adsorption on noble metals (Pt, Rh, Pd) and their alloys (Pt-Rh, Pd-Pt, Pd-Rh, Pd-Pt-Rh) prepared as thin rough deposits have been studied by chronoamperometry (CA), cyclic voltammetry (CV) and the electrochemical quartz crystal microbalance (EQCM). The influence of alloy surface composition on the values of surface coverage, eps (electron per site) and potential of the oxidation of CO(2) reduction and CO adsorption products is shown. The oxidation of the adsorbate on Pt-Rh alloys proceeds more easily (at lower potentials) than on pure metals. On the other hand, in the case of Pd-Pt and Pd-Rh alloys the adsorbate oxidation is more difficult and requires higher potentials than on Pt or Rh. The analysis of the EQCM signal is presented for the case of adsorption and oxidation of carbon oxide adsorption products on the electrodes studied. The comparison of adsorption parameters and the EQCM response obtained for platinum group metals and alloys leads to the conclusion that reduced CO(2) cannot be totally identified with adsorbed CO.  相似文献   

13.
Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in mesoporous molecular sieve SBA-15 was studied by using cyclic voltammetry and in situ FTIR spectroscopy. Cyclic voltammetric studies revealed that the Pt nanoparticles confined in SBA-15 exhibit a high activity in the presence of hydrated phase consisting of SiO2 in the SBA-15. In situ FTIR spectroscopy results discovered that IR absorption of CO adsorbed on Pt nanoparticles confined in SBA-15 has been enhanced 11-fold, and the full-width at half-maximum of the CO band is significantly increased, in comparison with IR feature of CO adsorbed on a bulk Pt electrode. The linearly adsorbed CO species is the only intermediate derived from dissociative adsorption of methanol, which is more readily oxidized to form CO2 in the aid of the active oxide in SBA-15.This paper is dedicated to Professor G. Horanyi on the occasion of his 70th birthday and in recognition of his outstanding contribution to electrochemistry  相似文献   

14.
The infrared emission spectra of CO adsorbed on alumina-supported 1, 3, and 5 wt % Rh, Ir, and Pt metal-containing catalysts were studied at 423 and 473 K. While CO is adsorbed in dicarbonyl (dimer), linearly (on-top) bonded and bridged carbonyl forms on rhodium and platinum, the dimer form is dominant on iridium. The relative intensity of Rh-CO and Ir-CO linear bands decrease with increasing temperature compared to the intensity of the dicarbonyl bands; the corresponding bands on Pt behave the opposite way. Two dicarbonyl and two linear Pt-CO bands were identified in the infrared spectra of Pt/Al(2)O(3) catalysts. The surface structure (kinked or planar Pt atoms), the dispersity of the metal, the temperature, and the quantity of adsorbed CO on the surfaces all have an effect on the fine structure of the Pt-CO stretching bands. The metal-carbon and CO stretching force constants were calculated for surface dicarbonyl, linearly bonded CO, and bridged carbonyl species. The metal-carbon stretching wavenumbers and force constants were predicted and compared between surface species and metal carbonyl complexes. The iridium-carbon bonds were found always stronger than the Rh-C and Pt-C ones in all surface species. The observed stretching wavenumbers and force constants seem to support the idea that CO and metal-carbon bonds are always stronger in metal carbonyl complexes than in adsorbed surface species. The distribution and mode of CO adsorption on surface metal sites can be effectively studied by means of infrared emission spectroscopy.  相似文献   

15.
The extremely narrow production peak of N2 and CO2 which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as "surface explosion," is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. This analysis incorporates recent experimental evidence obtained for the same reaction on a Rh(111) surface, which has shown that N2 production occurs either from the classical N+N recombination step or by the formation and successive decay of a (N-NO)* intermediary species. Moreover, the NO dissociation rate is inhibited by coadsorbed NO and CO molecules and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest neighbors. These effects are taken into account in this study, along with the experimental adsorption, desorption, and diffusion rates of the reactants. The "explosive" phenomenon is analyzed through the evolution over time of an adsorbed NO+CO monolayer at a fixed temperature of 400 K. Furthermore, as the diffusion processes of the adsorbates are included, cellular structures are observed. Our simulations show quantitative agreement in the position of maxima with those obtained through experiments using isothermal desorption mass spectroscopy.  相似文献   

16.
Catalytic activity of binary and multicomponent semiconductors of the ZnSe-CdTe system prepared in a form of powders and nanofilms in CO oxidation was studied by pulsed flow and circulation flow methods. The conditions of maximal CO conversion were determined from the results of investigation of individual and joint adsorption of the reactants in a broad temperature range, and the specific activity of the catalysts was determined by the specific reaction rate at the specified temperature and composition of the reaction mixture. A noticeable catalytic transformation of CO on the semiconductors under study (up to 78.5%) was noted as low as room temperature. It was concluded that the oxidation of CO and adsorption of the CO + O2 mixture proceeds mainly by the collisional mechanism. It was noted that the high activity of studied catalysts already at room temperature (the (ZnSe)0.05(CdTe)0.95 solid solution possessed the highest activity) and the absence of high-cost metals in their composition allow us to recommend them as low-temperature, relatively low-cost catalysts for the neutralization of CO (carbon monoxide).  相似文献   

17.
 采用一氧化碳程序升温脱附(CO-TPD)和吸附的一氧化碳加氢程序升温表面反应(TPSR)考察了Fe助剂对Rh基催化剂上CO的脱附行为及吸附CO的加氢行为的影响.CO-TPD实验表明,在Rh/SiO2催化剂上CO有三个脱附峰.在Rh-Mn-Li/SiO2中加入0.05%Fe后,高温脱附CO比Rh/SiO2催化剂上相应的CO量大.增加Fe的负载量,CO的脱附量减少.TPSR实验中,CO加氢反应的主要产物是甲烷.不同组分的催化剂上甲烷的生成温度有如下顺序:Rh/SiO2(482K)<Rh-Mn-Li/SiO2(489K)<Rh-Fe/SiO2(494K)<Rh-Mn-Li-Fe/SiO2(501K).甲烷峰的产生伴随着CO(s)高温脱附峰的消失,说明甲烷是由强吸附的CO加氢生成的.  相似文献   

18.
We present here a first principles density functional theory investigation of the reactivity of Pt(111)-skin catalysts, which are varied from surface alloys with Ni to bulk PtxNi 1-x (x=0.25,0.50,0.75) alloys. Molecule (CO, O, and H) adsorption and oxidation of CO+O and H+O reactions were studied and analyzed in detail. Independent of the adsorbates, the interaction between adsorbates and substrates becomes weakened with increase in Ni, due to the downshift of d-band center of surface Pt atoms. Moreover, activation barriers of CO and H oxidation toward atomic oxygen gradually decrease. In term of CO preferential oxidation (PROX) in excess of hydrogen, it turns out that the overall reactivity and selectivity rely on the optimum of various elementary steps involved such as competitive molecular (dissociative) adsorption and oxidation reaction. The present calculations show that Pt3Ni(111) with Pt overlayer is an optimum catalyst for CO PROX in excess of hydrogen.  相似文献   

19.
We have found efficient electrocatalytic removal of CO by rhodium octaethylporphyrin on carbon black at a wide potential range. Using carbon-supported rhodium octaethylporphyrin, we have separated the Rh(II) state participating reaction and the Rh(III) state participating reaction with CO. We have clearly demonstrated electrocatalytic CO oxidation by rhodium(III) porphyrin. The onset potential for CO oxidation is much lower than that for CO oxidation by conventional Pt/Ru catalysts and cobalt porphyrin.  相似文献   

20.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号