首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
随着原油资源重质化和劣质化的加剧以及对清洁燃料油品需求的不断增加,将重质油加工成清洁燃料成为现代炼厂面临的挑战.悬浮床加氢是重质油转化为清洁液体燃料的先进技术,其核心难题是高效加氢催化剂的开发.MoS2在石油化工领域油品加氢提质研究中表现出非常好的催化加氢性能.MoS2晶体结构中有两种面:沿S-Mo-S层间的剥离面,又称基面,化学性质稳定;沿Mo-S的断裂面,又称棱面,具有大量的不饱和键,化学性质不稳定,可做催化活性中心.由于MoS2结构和形貌对其物理化学性能有重要影响,所以通过合理设计和调控MoS2的结构和形貌可增加暴露的催化活性位,进而改善其催化性能.本文以七钼酸铵和硫代乙酰胺为原料,水合肼做还原剂,采用不同表面活性剂(包括PEG,PVP,P123,SDS,AOT和CTAB)辅助的水热合成法制备了结构及形貌可控的MoS2,并提出不同表面活性剂条件下MoS2催化剂的生长机理,进一步研究了重油模型化合物稠环芳烃蒽的催化加氢性能.结果表明,在不同表面活性剂辅助的条件下分别制得了由MoS2纳米片组装而成的球形、块状和花状的MoS2产物;通过改变表面活性剂种类可调变MoS2纳米片的长度、堆积层数、层间距以及最终产物的形貌.在PEG或PVP辅助下得到了球形MoS2产物,其中MoS2纳米片长<15 nm,堆积层数<6.在PEG辅助下制备的球形MoS2粒径约为250 nm,尺寸均一且分散性好.在PVP辅助下MoS2粒径在200–450 nm,粒径分布范围宽且有明显团聚.在P123或SDS辅助下得到了团聚较明显的块状微米级MoS2产物.在P123辅助下得到的MoS2纳米片长<15 nm,层数<6.在SDS辅助下制备的MoS2纳米片长>20 nm,堆积层数>8.在AOT或CTAB辅助下得到团聚比较严重的花状微米级MoS2产物,其中MoS2纳米片长>20 nm,堆积层数>8.另外,水热反应过程中,高温高压的环境促进了反应体系中游离的NH4+插入到MoS2层状结构中,导致MoS2纳米片层间距增大.基于此,本文提出了不同表面活性剂辅助的水热过程中不同结构和形貌MoS2产物的形成机理.对不同结构和形貌的MoS2样品进行了悬浮床蒽加氢催化性能评价.结果表明,PEG辅助制备的MoS2催化剂具有最高催化加氢活性.该MoS2催化剂中纳米片层短,堆积层数少,暴露了更多的加氢活性位.单分散的球形MoS2颗粒粒径小,分散性好,有利于加氢活性位的充分暴露,进而表现出较好的催化性能.本文所采用的表面活性剂辅助的水热法为可控合成不同结构和形貌的过渡金属硫化物提供了有效指导和借鉴.  相似文献   

2.
以聚乙二醇为模板剂制备MoS2空心微球   总被引:1,自引:0,他引:1  
吴壮志  王德志  徐兵 《物理化学学报》2008,24(10):1927-1931
以聚乙二醇(PEG)为模板剂, 采用软模板法制备出MoS2空心微球, 并采用X射线衍射仪(XRD)、红外光谱仪(IR)和扫描电子显微镜(SEM)对产物进行表征. 结果表明, 所制备的MoS2为粒径约2-7 μm的空心微球, 但结晶程度较差, 需通过退火工艺进行改善; 聚乙二醇与MoS2发生了较为强烈的有机-无机杂化作用, 其浓度和分子量对产物形貌调控均有重要影响. 同时, 结合红外光谱分析, 对MoS2空心微球的形成机理进行了初步的探讨.  相似文献   

3.
以聚乙二醇为模板剂制备MoS2空心微球   总被引:1,自引:0,他引:1  
以聚乙二醇(PEG)为模板剂,采用软模板法制备出MoS2空心微球,并采用X射线衍射仪(XRD)、红外光谱仪(IR)和扫描电子显微镜(SEM)对产物进行表征.结果表明,所制备的MoS2为粒径约2-7μm的空心微球,但结晶程度较差,需通过退火工艺进行改善;聚乙二醇与MoS2发生了较为强烈的有机-无机杂化作用,其浓度和分子量对产物形貌调控均有重要影响.同时,结合红外光谱分析,对MoS2空心微球的形成机理进行了初步的探讨.  相似文献   

4.
混合模板法制备螺旋纳米结构二氧化硅   总被引:2,自引:0,他引:2  
用凝胶剂高氯酸环(L-11-(N-甲基咪唑)十一烷基天冬酰胺-L-苯丙酰胺)(11mim ClO4)和十六烷基三甲基氯化铵(CTAC)作模板剂,经溶胶-凝胶过程,制备纳米结构二氧化硅.使用冷场发射扫描电镜(FESEM),表征了多种反应条件下样品的形貌和表面结构.结果表明,通过调节CTAC和凝胶剂的质量比,可以得到螺旋介孔二氧化硅纳米纤维,其长度为数百纳米,孔径为3.0nm.  相似文献   

5.
通过溶剂热方法合成了ZnMn2O4微米空心球,并探讨了其形成机理。采用XRD,SEM,TEM等测试手段对产物的结构、形貌和组成进行了表征。实验结果表明,溶剂热反应条件如反应温度、反应介质对于产物的结构和形貌起着关键作用。在140℃,采用乙醇和水作为反应介质,反应6 h可以制备出直径约3μm的ZnMn2O4微米空心球;当以乙醇为溶剂,反应6 h可以得到团聚的尺寸约250 nm的ZnMn2O4纳米颗粒。将所制备的ZnMn2O4微米空心球/纳米颗粒组装成锂扣式模拟电池,考察其电化学脱嵌锂性能。电化学测试结果显示,与ZnMn2O4纳米颗粒相比,空心结构的ZnMn2O4微米球具有较高的初始放电容量(1335 mAh·g-1)和较好的倍率性能,有望作为锂离子电池的新型负极材料。  相似文献   

6.
以水热方法制备具有多级纳米结构的In2S3空心微球. 通过对不同反应时间产物的跟踪表征, 证明微球中空结构的形成归因于Ostwald ripening机理. 空心微球的壳层由In2S3的纳米粒子或纳米片组成, In2S3空心球的紫外可见光谱蓝移以及荧光光谱在约385 nm的强发射和364 nm的弱发射, 均显示了纳米尺度In2S3晶体的量子局限效应. 以不同的氨基酸作为晶体生长修饰剂, 可以选择性地制备不同表面形貌的In2S3空心微球, 显示了氨基酸的不同功能团在In2S3晶体生长过程中对表面形貌的控制作用.  相似文献   

7.
以L-亮氨酸为手性源合成了手性阳离子两亲性小分子化合物L-18Leu6NEtBr,用其自组装体作为模板,氢氧化钠为催化剂,经溶胶-凝胶过程制备出介孔二氧化硅纳米空心球;分析了介孔二氧化硅纳米空心球的尺寸和孔径.结果表明,所制备的二氧化硅空心球直径约100nm;其介孔孔道平行于壳表面,孔径为3.1nm.  相似文献   

8.
室温条件下,在含有Zn2+的溶液中,以空心结构的MnO2作为前驱体,使用NaBH4作为还原剂,合成了尖晶石型的ZnMn2O4纳米空心球和纳米空心立方体. 通过XRD,SEM,TEM,BET等测试手段对合成产物的结构、形貌、组成、表面性质进行了表征. 实验结果表明,所制备的空心结构ZnMn2O4纳米球和纳米立方体的尺寸在400?600 nm, 空心结构的壳层是由5?6 nm颗粒紧密堆积而形成,厚度约为40 nm. 将所制备的纳米ZnMn2O4空心结构应用于氧还原(ORR)反应中,研究了其在碱性溶液中的氧还原电催化性能,结果显示,相对于ZnMn2O4纳米空心立方体,ZnMn2O4纳米空心球在氧还原反应中表现出较大的电流密度和高的电子转移数 (n=3.5), 具有较好的氧还原电催化性能,有望成为一种新型的氧还原电极电催化剂.  相似文献   

9.
三元添加剂水溶液体系合成亚微米硫化锌空心球   总被引:4,自引:0,他引:4  
利用仿生合成方法,通过加入一定量的引发剂使甲基丙烯酸原位聚合,在聚乙二醇(PEG)、聚甲基丙烯酸(PMAA)和十二烷基硫酸钠(SDS)的三元添加剂混合溶液体系中控制了合成硫化锌晶体,提出了一种简单易行的合成硫化锌空心球的新方法.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD)及紫外吸收光谱等手段对合成样品的形貌、结构及性能进行了表征.TEM结果显示,ZnS空心球的直径约为300~400nm,其壳层的厚度约为50nm.SEM结果显示,空心球的外壳是由初级纳米粒子定向熔合排列形成的蠕虫状结构紧密组装而成.由于相应的胶束结构的改变,表面活性剂SDS浓度的变化明显改变了ZnS产物的形貌,在较高浓度的SDS溶液中得到了ZnS片状晶体的球形聚集体.利用核-壳机理初步解释了空心球结构的形成过程.  相似文献   

10.
钒氧化物微/纳米空心球由于具有比表面积高、负载容量大、密度低等特性,在催化剂、传感器、锂离子电池、电池阴极材料等相关行业中有着广泛的应用前景和研究价值。本文综述了钒氧化物微/纳米空心球材料的制备方法,包括软模板剂法、硬模板剂法、水热合成法和溶剂热合成法等的研究进展,并对今后的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号