首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
Bioassay-guided fractionation of the diethyl ether fraction of a water extract of Picea schrenkiana needles led to the isolation of the phenolic compound 3,4-dihydroxy- acetophenone (DHAP). The allelopathic effects of DHAP were evaluated under laboratory conditions on P. schrenkiana, rice (Oryza sativa L.), wheat (Triticum aestivum L.), radish (Raphanus sativus L.), lettuce (Latuca sativa L.), cucumber (Cucumis sativus L.) and mung bean (Phaseolus radiatus L.). DHAP significantly inhibited seed germination and seedling growth of P. schrenkiana at concentrations of 2.5 mM and 0.5 mM (p < 0.05). Soil analysis revealed that P. schrenkiana forest soils contained exceptionally high DHAP concentrations (mean = 0.51 ± 0.03 mg/g dry soil), suf?cient to inhibit natural P. schrenkiana recruitment. DHAP also exhibited strong allelopathic potential. It significantly inhibited wheat and lettuce seed germination at concentrations of 1 mM and 0.5 mM (p < 0.05). The active compound also completely inhibited root growth of the six test species at high concentrations. Our results suggest a dual role of DHAP, both as an allelochemical and as an autotoxicant. The potential for a single plant needle-leached compound to in?uence both inter- and intra-speci?c interactions emphasized the complex effects that plant secondary metabolites might have on plant population and community structure.  相似文献   

2.
2,5-Dihydroxy-1,4-dithiane (I) and its derivatives (II-IV) showed rather marked inhibitory activities on the growth of the roots of two plant species. All compounds tested had phytogrowth-inhibitory activities. These compounds markedly inhibited the growth of the two plant species at the concentration of 1.0 x 10(-3) M. Seeds of Brassica rapa treated with 2,5-dihydroxy-2,5-dimethyl-1,4-dithiane (III) and its diacetate (IV) at the same concentration failed to germinate. Among these compounds, IV showed the most potent inhibitory activity on the two plant species. The radicles of both plant species treated with these compounds at concentrations higher than 1.0 x 10(-4) M showed negative geotropism, even though germination occurred. The compounds except for 2,5-diacetoxy-1,4-dithiane (II) also had antibacterial activities. In particular, III had rather marked antibacterial activity and its minimal inhibitory concentration (MIC) for Staphylococcus aureus IFO-3060 and Escherichia coli IFO-12734 was 4.0 micrograms/ml.  相似文献   

3.
Seven new sesquiterpenes, with nerolidol skeleton, have been isolated and characterized from the plant Amaranthus retroflexus, one of the major weeds of the world. The structures have been elucidated on the basis of spectroscopic data. The compounds have been characterized by the presence of hydroxyl groups or a glucopyranosyl moiety in the molecules. The configurations have been determined using Mosher's method. The compounds have been tested for their phytotoxicity on the test species Lactuca sativa. The bioassays showed an inhibitory effect on seed germination for all of compounds at the lowest concentrations.  相似文献   

4.
The reaction of the N-furfuryloxamic acid sodium salt (12) with 1,1'-oxalyldiimidazole (ODI) yielded the imidazolide (13) as an intermediate, and this directly reacted with 2-aminothiazole derivatives (14) or 2-aminobenzothiazole derivatives (15) under essentially neutral conditions to afford the N'-12-(substituted thiazolyl)]- or N'-[2-(substituted benzothiazolyl)]-N'-furfuryloxamides (6 or 7). The prepared compounds (6 and 7) were examined for plant growth regulatory activity in a seed germination assay. The examination resulted in the discovery of some new revelations that N'-[2-(5,6-dimethylbenzothiazlyl)]-N-furfuryloxamide (7c) at the concentration of 1.0 x 10(-3) M completely inhibited the radicle growth of both rape and leek seedlings.  相似文献   

5.
The investigation of the chemical constituents of Symplocos racemosa Roxb led to the isolation of two new glycosides, symcomoside A (1) and symcomoside B (2), together with one known glycoside, tortoside C (3), which is reported for the first time from this plant. The structures of the new compounds were determined by 1D and 2D homonuclear and heteronuclear NMR spectroscopy, from chemical evidence and by comparison with published data for closely related compounds. Symcomoside B (2) showed potent inhibitory activity against alpha-glucosidase in a concentration-dependent fashion with an IC50 value of 0.733 +/- 0.033 mM whereas symcomoside A (1) showed very weak inhibitory activity against alpha-glucosidase (9.90% in 0.70 mM).  相似文献   

6.
Four new carexanes and a new seco-derivative metabolite have been isolated and characterized from the herbaceous plant Carex distachya Desf. All of the structures have been elucidated on the basis of spectroscopic data. These compounds derive from the cyclization of prenylate stylbenoid precursors. The seco-carexane is formed by a further oxidative cleavage of the C-7-C-8 bond. The absolute configurations have been determined by Mosher's method using appropriate chemical correlations. All of the carexanes A-H have been tested for their phytotoxicity against Lactuca sativa. The bioassays showed an inhibitory effect on seed germination for all compounds described in this report.  相似文献   

7.
为探讨苯乙酸(PA)对肝癌细胞系SMMC-7721的增殖抑制作用及其与RNA编辑酶ADAR1表达的相关性, 应用细胞计数及MTT法检测了不同浓度(0.5, 1.0, 2.0和4.0 mmol/L)PA对肝癌细胞系SMMC-7721的增殖抑制作用, 通过流式细胞术(FCM)分析了各细胞周期的细胞百分比, 应用半定量逆转录-聚合酶链式反应(RT-PCR)及免疫印迹杂交分析使用不同浓度(0.5, 1.0, 2.0 mmol/L)PA作用后肝癌细胞系SMMC-7721中RNA编辑酶ADAR1 mRNA及蛋白表达的变化. 结果表明, 肝癌细胞系SMMC-7721经不同浓度PA作用后, 增殖抑制率随作用时间延长及PA浓度增加而明显提高(P<0.05), 但2.0和4.0 mmol/L PA作用72 h后组间差异比较无统计学意义(P>0.05). 肝癌细胞系SMMC-7721中RNA编辑酶ADAR1 mRNA及蛋白表达随PA浓度增加而明显降低(P<0.05). 通过沉默SMMC-7721细胞中ADAR1的表达发现, ADAR1表达下调可有效抑制肝癌细胞增殖. 结果表明, PA可阻抑肝癌细胞系SMMC-7721细胞增殖, 且存在时间及剂量的依赖性, 作用机制与PA下调ADAR1表达相关.  相似文献   

8.
Crop diseases caused by Fusarium pathogens, among other microorganisms, threaten crop production in both commercial and smallholder farming. There are increasing concerns about the use of conventional synthetic fungicides due to fungal resistance and the associated negative effects of these chemicals on human health, livestock and the environment. This leads to the search for alternative fungicides from nature, especially from plants. The objectives of this study were to characterize isolated compounds from Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal leaf extracts, evaluate their antifungal activity against Fusarium pathogens, their phytotoxicity on maize seed germination and their cytotoxicity effect on Raw 264.7 macrophage cells. The investigation led to the isolation of antifungal compounds characterized as 5-hydroxy-7,4′-dimethoxyflavone, maslinic acid (21-hydroxy-3-oxo-olean-12-en-28-oic acid) and withaferin A (4β,27-dihydroxy-1-oxo-5β,6β-epoxywitha-2-24-dienolide). The structural elucidation of the isolated compounds was established using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and, in comparison, with the available published data. These compounds showed good antifungal activity with minimum inhibitory concentrations (MIC) less than 1.0 mg/mL against one or more of the tested Fusarium pathogens (F. oxysporum, F. verticilloides, F. subglutinans, F. proliferatum, F. solani, F. graminearum, F. chlamydosporum and F. semitectum). The findings from this study indicate that medicinal plants are a good source of natural antifungals. Furthermore, the isolated antifungal compounds did not show any phytotoxic effects on maize seed germination. The toxicity of the compounds A (5-hydroxy-7,4′-dimethoxyflavone) and AI (4β,27-dihydroxy-1-oxo-5β,6β-epoxywitha-2-24-dienolide) was dose-dependent, while compound B (21-hydroxy-3-oxo-olean-12-en-28-oic acid) showed no toxicity effect against Raw 264.7 macrophage cells.  相似文献   

9.
Karrikinolide is a naturally derived potent seed germination stimulant that is responsible for triggering the germination of numerous plant species from various habitats around the world. We now report that solar irradiation of karrikinolide yields two novel head-to-head cage photodimers with the formation, stability and bioactivity of both presented herein.  相似文献   

10.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   

11.
Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly alpha-pinene (35.2%) and beta-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.  相似文献   

12.
Chemically modified compounds of glycyrrhizin have been synthesized and evaluated for their inhibitory effect on the replication of human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1). Among them, the 11-deoxo compound having a heteroannular diene structure at the C and D rings proved as active against HIV-1 as glycyrrhizin in MT-4 and MOLT-4 cells. It completely inhibited HIV-1-induced cytopathogenicity in both cell lines at a concentration of 0.16 mM. The compound was also effective against HSV-1 with a 50% inhibitory concentration of 0.5 mM [corrected].  相似文献   

13.
This study was conducted to assess the allelopathic effect of essential oils (EOs) obtained from the aerial parts of two different ecotypes (ECTPs A and B) of Zataria multiflora Boiss. with the aim of evaluating their in vitro germination and growth inhibition potential. Gas chromatography (GC) and GC-mass spectrometry (GC-MS) analysis of the oils revealed that carvacrol and linalool (77.4% and 90.6%) were the two major oil components in ECTPs A and B, respectively, which were regarded as two different chemotypes. Other important volatile compounds found in ECTP A were α-pinene (2.7%), p-cymene (7.9%) and γ-terpinene (3.5%). However, in ECTP B these compounds were in lesser amounts and γ-terpinene was not detected. The inhibitory effects of both EOs of ECTPs at concentrations of 0, 80, 160, 320 and 640 μL L?1 on the seed germination and seedling growth of four noxious weeds were evaluated. A significant reduction (p ≤ 0.05) in germination rate, seedling length, root and stem fresh and dry weights were observed by ECTPs; the highest suppressing effect was observed at 320 and 640 μL L?1. The results reported in this study suggest that herbicidal properties of the two ECTP oils could be attributed to their major components.  相似文献   

14.
An effect-directed profiling method was developed to investigate 17 different fortified plant extracts for potential benefits. Six planar effect-directed assays were piezoelectrically sprayed on the samples separated side-by-side by high-performance thin-layer chromatography. Multipotent compounds with antibacterial, α-glucosidase, β-glucosidase, AChE, tyrosinase and/or β-glucuronidase-inhibiting effects were detected in most fortified plant extracts. A comparatively high level of antimicrobial activity was observed for Eleutherococcus, hops, grape pomace, passiflora, rosemary and Eschscholzia. Except in red vine, black radish and horse tail, strong enzyme inhibiting compounds were also detected. Most plants with anti-α-glucosidase activity also inhibited β-glucosidase. Green tea, lemon balm and rosemary were identified as multipotent plants. Their multipotent compound zones were characterized by high-resolution mass spectrometry to be catechins, rosmarinic acid, chlorogenic acid and gallic acid. The results pointed to antibacterial and enzymatic effects that were not yet known for plants such as Eleutherococcus and for compounds such as cynaratriol and caffeine. The nontarget effect-directed profiling with multi-imaging is of high benefit for routine inspections, as it provides comprehensive information on the quality and safety of the plant extracts with respect to the global production chain. In this study, it not only confirmed what was expected, but also identified multipotent plants and compounds, and revealed new bioactivity effects.  相似文献   

15.
In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (p?+ concentration (100 mM), high pH reduced the mean time of germination and increased the germination rate, without decline in final germination percentage and survival percentage. Therefore, at least in the duration of seed germination to the harvest period in the research, the sweet sorghum was resistant to the pH stress (≥9.04) when the Na+ concentration was below 100 mM. When suffered from the saline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects and limited the self-healing ability of sweet sorghum seedlings. In all, in order to grow sweet sorghum in the saline-alkaline soils of the Yellow River Delta, the salt concentration and pH value of the soil must be taken into consideration, and seeding density should be increased and supported by appropriate irrigation measures to reduce saline-alkaline stress so as to ensure the survival and growth of sweet sorghum seedlings.  相似文献   

16.
Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites “silymarin”, primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark?+?2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.  相似文献   

17.
The antifungal activities of dihydrosanguinarine and dihydrochelerythrine, isolated from the leaves of Macleaya microcarpa, were evaluated on 12 plant pathogenic fungi; the two compounds exhibited the highest antifungal activity against Botrytis cinerea Pers. Among the 11 tested plant pathogenic fungi in vitro, the two compounds showed the highest antifungal activity against B. cinerea Pers, with 95.16% and 98.32% mycelial growth inhibition at 50 μg mL?1, respectively. In addition, the two compounds inhibited spore germination in vitro in a concentration-dependent manner. They also showed potent protective and curative effects against Erysiphe graminis and B. cinerea in vivo. This is the first report on the antifungal activity of dihydrosanguinarine and dihydrochelerythrine against pathogenic plant fungi.  相似文献   

18.
Serratia marcescens, like several other bacterial species, is able to adhere to and swarm on growth surfaces, and this property is correlated with changes in the structures and functions of cells which pass from broth to solid media. In the case of the pigmented form of S. marcescens strain SMG40, the response to the contact with agar was influenced by the presence of Ca2+ ions as follows. (1) In the swimming phase, i.e. in soft 0.35% agar media, expansion was not modified upon the addition of 5–35 mM Ca2+ ions. (2) On growth surfaces inducing swarming, i.e. on media containing 0.75% agar (low agar), Ca2+ ions used at low concentrations (e.g. 0.5mM) enhanced both growth and expansion. (3) At higher concentrations (from 3 mM). the Ca2+ ions inhibited expansion but not growth. Correlatively, the cell density per unit of the surface occupied by bacteria inhibited from swarming was increased: expansion rates of swarms at successive periods were lower and showed less fluctuation than normal. In a non-pigmented but still good swarmer mutant, found to be more sensitive to calcium, expansion was reduced to 50% with at most 0.5 mM Ca2+ ions. One-step revenants recovered pigmentation and the initial response to Ca2+ ions described in points (2) and (3) above. The inhibitory activity of CaCl2 was partly antagonized by NaCl. Other properties implied in the interactions of Serratia cells with agar, i.e. pigmentation, adherence to solid surfaces and the production of an extracellular surfactant were not inhibited by Ca2+ ions.  相似文献   

19.
Screening of antibacterial activity and toxicity of 22 aqueous plant extracts from 17 Turkish plants was conducted. Antibacterial activity was performed with six bacteria including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Staphylococcus epidermidis. Extracts of Tussilago farfara leaves, Helichyrsum plicatum flowers, Solanum dulcamara aerial parts and Urtica dioica leaves gave the best inhibitory activity against S. pyogenes, S. aureus and S. epidermidis. Of the 22 plant extracts, 20 extracts displayed toxicity (LC50 was <1000 mg L(-1)) in the brine shrimp bioassay. For radish seed bioassay, two different determinations (root length and seed germination) were performed with a comparison between two concentrations (50,000 mg L(-1) and 10,000 mg L(-1)). At low concentration (10,000 mg L(-1)), S. dulcamara aerial parts and Primula vulgaris leaf extracts were observed to inhibit the root length more than the other plant extracts. Also, the most inhibitive plant extract for seed germination was obtained with S. dulcamara aerial parts.  相似文献   

20.
This paper presents the effect of acrolein on three dehydrogenases and proposes a fast spectrometric method for acrolein analysis. We have found that alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AlDH) are inhibited by low acrolein concentrations (0.2?mM) while inhibition of glutamate dehydrogenase (GDH) is not observed even at higher acrolein concentrations (1?mM). Acrolein is a suicide substrate for AlDH and ADH inhibition by acrolein is competitive. Cysteine (L-Cys) and glutathione (GSH) react with acrolein and thus reduce its expected inhibitory effect. ADH was chosen to develop a spectrophotometric method for acrolein analysis based on enzyme inhibition. The calibration curve is linear between 0.2 and 1.0?mM acrolein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号