首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research aims to develop new materials based on renewable resources that can fulfill the functions necessary in the absorption core of a disposable diaper. Absorbent foam was recently produced from softwood kraft pulp by TEMPO oxidation, disintegration and freeze drying. In this study, the TEMPO-oxidized MFC was mixed with pulp fibres, thus forming a cellulosic composite, in an attempt to improve the mechanical stability of the freeze-dried absorbent material. The fibres were added in different amounts and the freeze-dried materials were evaluated for their absorption and retention properties. The results of this study suggest that the composite material has a better mechanical stability than the absorbent foam without fibres. It was shown that using spruce CTMP fibres in the composite resulted in better absorption and retention capacities than in a composite with softwood kraft pulp fibres. The higher stiffness of the CTMP fibres is a probable explanation for this difference. For the composite material with CTMP fibres, liquid porosimetry showed that pore size distribution was more or less retained when put under load. Furthermore, it was seen that the retention properties reached a maximum around 85 % CTMP fibres and 15 % TEMPO-oxidized MFC. In the centrifuge retention test, the retention of the TEMPO-oxidized MFC in the composite material reached about the same capacity as conventional superabsorbent polymers.  相似文献   

2.
Composite manufacturing is currently one of the most challenging processes for industrial lightweight applications. To date, the process conditions for polymer‐based composite manufacturing are evaluated by laboratory measurements: usually, the flow behavior and the curing of the polymer matrix material are characterized by rheology and quality assurance is performed by thermo‐physical analysis in postprocess measurements. In contrast a dielectric in‐mold sensor offers the possibility to measure the real‐time behavior of the polymer during processing. This study focuses on the correlation of simultaneous rheological and dielectric measurements on Hexcel RTM6 using a coupled setup of both techniques. For dielectric measurements a reusable in‐mold sensor was used and a calibration, taking into account the cable response, was performed. The results show good agreement with respect to glass‐transition temperature and the gel‐point. This can be understood by the fluctuation–dissipation theorem that explicitly relates molecular dynamics to the macromolecular mechanical properties under dynamic time‐dependent load. Furthermore, it was found that the dynamic viscosity can directly be related to the electrical conductivity. This proves the high potential of dielectric analysis as online‐capable technique for material characterization during composite manufacturing. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 907–913  相似文献   

3.
The evolution of the polymerization of a light-cured methacrylate-based composite material (Pekalite) used in dentistry was studied. Fourier transform infrared spectroscopy and thermal analysis (TA) showed that with increasing the photo-polymerization time from 5 to 60 s, the degree of conversion increases from 32.5 to 59.6 % and thermal stability of the composite material increases from 144.6 to 270 °C. Growth of photo-polymerization time from 5 to 60 s produces an improvement in the mechanical strength of the composite material from 153 to 248 MPa. Spectral analysis and TA are two complementary and rapid methods for determining the degree of polymerization of composite materials used in dentistry.  相似文献   

4.
Different approaches to synthesis of Li2FeSiO4-based electrode materials for lithium intercalation, using low-cost and abundant Li-, Si-, and Fe-containing parent substances, are discussed. XRD, SEM, and a laser-diffraction analyzer of particle size were used for structure and morphology characterization of the composite electrode materials. Li2FeSiO4 was shown to be the main lithium-accumulating crystalline phase; minor LiFeO2 and Li2SiO3 admixtures are also present. The material microparticles’ average size was shown to vary from tenths of micrometer to 1 μm. Larger objects sized ca. 2–4 μm are the microparticles’ agglomerates. The material electrochemical properties were studied by dc chronopotentiometry (galvanostatic charging–discharging) and cyclic voltammetry with potential linear sweeping. The initial reversible cycled capacity of the best samples is 170 mA h/g. The anodic and cathodic processes manifest obvious hysteresis caused by the presence of several different lithium ion energy states in the material; the transition between the states is kinetically hindered. The dependences of the specific capacity and its stability under cycling on the current load and the conductive carbon component content in the composite were elucidated.  相似文献   

5.
Highly flexible, optically transparent epoxy resin/cellulose composites were prepared by using the solution impregnation method firstly and then thermal cured. The composite contained 60 wt% resin was still mechanically stable and flexible, and it integrated the merits of cellulose and resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties, and a decrease in the water uptake and the permeability towards water vapor gas was also observed. The transmittance of the composite films at 550 nm was about 85–88 %. The thermal and mechanical properties of the composite films were improved. Moreover, the composite films could be used in UV imprint lithography for circuit, and the definition could be compared with that of widely used glass plate.  相似文献   

6.
Self‐assembled poly(N‐methylaniline)–lignosulfonate (PNMA–LS) composite spheres with reactive silver‐ion adsorbability were prepared from N‐methylaniline by using lignosulfonate (LS) as a dispersant. The results show that the PNMA–LS composite consisted of spheres with good size distribution and an average diameter of 1.03–1.27 μm, and the spheres were assembled by their final nanofibers with an average diameter of 19–34 nm. The PNMA–LS composite spheres exhibit excellent silver‐ion adsorption; the maximum adsorption capacity of silver ions is up to 2.16 g g?1 at an adsorption temperature of 308 K. TEM and wide‐angle X‐ray results of the PNMA–LS composite spheres after absorption of silver ions show that silver ions are reduced to silver nanoparticles with a mean diameter of about 11.2 nm through a redox reaction between the PNMA–LS composite and the silver ions. The main adsorption mechanism between the PNMA–LS composite and the silver ions is chelation and redox adsorption. In particular, a ternary PNMA–LS–Ag composite achieved by using the reducing reaction between PNMA–LS composite spheres and silver ions can be used as an antibacterial material with high bactericidal rate of 99.95 and 99.99 % for Escherichia coli and Staphylococcus aureus cells, respectively.  相似文献   

7.
Composite nanomaterials usually possess synergetic properties resulting from the respective components and can be used for a wide range of applications. In this work, a Pd nanocubes@ZIF‐8 composite material has been rationally fabricated by encapsulation of the Pd nanocubes in ZIF‐8, a common metal–organic framework (MOF). This composite was used for the efficient and selective catalytic hydrogenation of olefins at room temperature under 1 atm H2 and light irradiation, and benefits from plasmonic photothermal effects of the Pd nanocube cores while the ZIF‐8 shell plays multiple roles; it accelerates the reaction by H2 enrichment, acts as a “molecular sieve” for olefins with specific sizes, and stabilizes the Pd cores. Remarkably, the catalytic efficiency of a reaction under 60 mW cm?2 full‐spectrum or 100 mW cm?2 visible‐light irradiation at room temperature turned out to be comparable to that of a process driven by heating at 50 °C. Furthermore, the catalyst remained stable and could be easily recycled. To the best of our knowledge, this work represents the first combination of the photothermal effects of metal nanocrystals with the favorable properties of MOFs for efficient and selective catalysis.  相似文献   

8.
《Journal of Energy Chemistry》2017,26(6):1267-1275
The lithium–sulfur batteries show the great potential to be the most promising candidate for high energy applications. However, the shuttling of soluble polysulfides deteriorates the battery performance tremendously. To suppress the diffusion of soluble polysulfides, diatomite that has abundant natural three-dimensional ordered pores is incorporated into the cathode to trap polysulfides. The composite cathode material(S-DM-AB for short), including sulfur(S), diatomite(DM), and acetylene black(AB) is prepared by an impregnation method. For comparison, another composite cathode material(S-AB for short) including sulfur and acetylene black is also prepared by the same method. The battery with S-DMAB composite cathode material delivers a discharge capacity of 531.4 m Ah/g after 300 cycles at 2 C with a capacity retention of 51.6% at room temperature. By contrast, the battery with S-AB composite cathode material delivered a capacity of only 196.9 m Ah/g with a much lower capacity retention of 18.6% under the same condition. The addition of diatomite in the cathode is proved to be a cheap and effective way to improve the life time of the lithium sulfur batteries.  相似文献   

9.
A composite material that comprised metal–organic nanotubes (MONTs) and a sponge, Cu?MONTs?sponge, was synthesized by using a rapid and convenient surfactant‐assisted dip‐coating method and used as a high‐performance adsorbent for the solid‐phase extraction of pharmaceuticals and personal care products (PPCP) from environmental water samples. By adjusting the surfactant concentration, a composite material that contained metal–organic nanotubes and a macroporous 3D porous sponge was constructed. This modified sponge achieved outstanding reproducibility as an adsorbent, with the adsorption of trace or ultratrace amounts of contaminants. Moreover, this composite material was conveniently recycled and its extraction efficiency only decreased by 6.3–12.1 % after 30 adsorption/desorption cycles. The resulting composite exhibited excellent adsorption capacity for PPCPs, which was attributed to its unique porous structure, natural hydrophobicity, and electrostatic interactions between the metal–organic nanotubes and analyte molecules. This Cu?MONTs?sponge material is an ideal adsorbent for the extraction of trace amounts of PPCPs from environmental water samples.  相似文献   

10.
Polypropylene (PP) constituted 30% of the collected material in a Swedish collection system for rigid plastic packaging waste. The PP fraction was however a complex mixture of grades with widely different properties. In order to enhance the rigidity of the recycled PP, modified grades were prepared by compounding with talc and/or a virgin high‐crystallinity PP grade. Adding 20–40% of high‐crystallinity PP enhanced the stiffness and yield strength without impairing the impact resistance. A composite material consisting of 20% of this grade, 20% talc and 60% recycled PP gave mechanical properties similar to those of a commercial talc‐filled PP compound used for demanding engineering applications. The present study demonstrates that recycled PP derived from post‐consumer packaging waste can also be made useful for demanding engineering applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A basic principle for selecting inorganic sealing materials for dense ionic-conducting ceramic membranes is described for high temperature permeation/reaction experiments. Based on this principle ceramic–glass composite seals consisting of the Pyrex glass and the ceramic powder of the membrane were developed and successfully used to seal a number of different dense ceramic membranes at high temperatures. The ceramic–glass composite seal is typically composed of 40–50 wt.% membrane material powder, 20–50 wt.% Pyrex glass and 5–20 wt.% additive such as sodium aluminate and boron oxide. The properties of ceramic–glass composite seal can be tailored to obtain suitable wettability, viscosity, chemical inertness, thermal expansibility, and bonding strength for good sealing results. A success rate for sealing these ceramic membranes of nearly 100% is possible using the ceramic–glass composite recipe if the correct sealing procedure, including seal paste preparation, is carefully followed.  相似文献   

12.
Rapid prototyping manufacturing techniques provide an avenue for quick and cost effective design assessments leading to shorter design cycles. In addition to providing first-of-a-kind and one-of-a-kind parts, rapid prototyped parts may be used as the actual part. In order for this to occur on a wide-spread basis, material properties of importance to design must be well understood. One pervasive rapid prototyping technique is Fused Deposition Modeling (FDM). A sampling of the basic structural properties of FDM polycarbonate parts as a function of orientation is presented. The results show that repeatable measurements can be made of the ultimate tensile strength and elastic modulus in FDM manufactured polycarbonate parts. The results also show a degradation in strength compared to bulk material properties (30%–53%, depending on orientation) and as manufactured properties as reported by the FDM vendor (36%–63%, depending on orientation).  相似文献   

13.
A composite consisting of PVC and CaCO3 particles was irradiated with different doses of Gamma rays or electron beam in order to compensate the tensile strength decreases by filler addition. The deployment of irradiation process on the composite improved significantly the tensile strength by about 10–20 % using E-beam and Gamma irradiation at a dose of 250 kGy, respectively. Moreover, the irradiated composite exhibited higher thermal stability. Two thermal dehydrochlorination processes after irradiation have been observed instead of three thermal process before. The calculation of the activation energy of each step showed that initiation step consumed about 60 % of the used energy.  相似文献   

14.
A theoretical analysis is performed for the study of the bonding of a viscoelastic rough surface to a rigid substrate. The mechanics of contact and adhesion are studied with the Dugdale–Barenblatt model for surface interaction. Exact solutions are obtained for arbitrary surface profiles and loading histories. Detailed solutions are given for a power‐law viscoelastic material. This solution is used to determine the time for the self‐bonding of surfaces (solid sintering under zero load). The time to self‐bonding is shown to be extremely sensitive to the aspect ratio of the asperities. A closed form expression is derived for the time needed to achieve full contact when the surfaces are compressed with a load that increases linearly with time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 545–561, 2002; DOI 10.1002/polb.10113  相似文献   

15.
In this paper, porous carbon was synthesized by an activation method, with phenolic resin as carbon source and nanometer calcium carbonate as activating agent. Sulfur–porous carbon composite material was prepared by thermally treating a mixture of sublimed sulfur and porous carbon. Morphology and electrochemical performance of the carbon and sulfur–carbon composite cathode were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge–discharge test. The composite containing 39 wt.% sulfur obtained an initial discharge capacity of about 1,130 mA?h g?1 under the current density of 80 mA?g?1 and presented a long electrochemical stability up to 100 cycles.  相似文献   

16.
The wide use of lithium ion batteries (LIBs) has created much waste, which has become a global issue. It is vital to recycle waste LIBs considering their environmental risks and resource characteristics. Anode graphite from spent LIBs still possess a complete layer structure and contain some oxygen-containing groups between layers, which can be reused to prepare high value-added products. Given the intrinsic defect structure of anode graphite, copper foils in LIB anode electrodes, and excellent properties of graphene, graphene oxide–copper composite material was prepared in this work. Anode graphite was firstly purified to remove organic impurities by calcination and remove lithium. Purified graphite was used to prepare graphene oxide–copper composite material after oxidation to graphite oxide, ultrasonic exfoliation to graphene oxide (GO), and Cu2+ adsorption. Compared with natural graphite, preparing graphite oxide using anode graphite consumed 40% less concentrated H2SO4 and 28.6% less KMnO4. Cu2+ was well adsorbed by 1.0 mg L?1 stable GO suspension at pH 5.3 for 120 min. Graphene oxide–copper composite material could be successfully obtained after 6 h absorption, 3 h bonding between GO and Cu2+ with 3/100 of GO/CuSO4 mass ratio. Compared to CuO, graphene oxide–copper composite material had better catalytic photodegradation performance on methylene blue, and the electric field further improved the photodegradation efficiency of the composite material.  相似文献   

17.
A loading of ramipril in SBA-15 (Santa Barbara Amorphous) mesoporous material was studied. (SBA-15)-ramipril composite material was characterized by chemical analysis, infrared spectroscopy, powder X-ray diffraction, low temperature N2 adsorption–desorption at 77 K characterization techniques. Ramipril drug release processes from SBA-15 host to simulated body fluid (SBF), simulated gastric juice (SGJ), simulated intestinal fluid (SIF) were monitored in a simulated way and actions of the sustained release of (SBA-15)-ramipril was studied. The results showed that the loading amount of ramipril drug in SBA-15 was 90.30 mg/g. The cumulative sustained release rate of ramipril composite drug in SBF achieved 99.7 % after 27 h. When the sustained release of composite drug in SGJ was 8 h, the maximum cumulative sustained release ratio achieved 54.9 %. When the sustained release of composite drug was 9 h in SIF, the maximum cumulative sustained release ratio achieved 34.9 %. The method described in this study is suitable for carrying ramipril drug on SBA-15, and a new carrier to load ramipril drug was found. Meanwhile, the efficacy of ramipril drug and time efficacy could be improved.  相似文献   

18.
Industrial synthesis is driven by a delicate balance of the value of the product against the cost of production. Catalysts are often employed to ensure product turnover is economically favorable by ensuring energy use is minimized. One method, which is gaining attention, involves cooperative catalytic systems. By inserting a flexible polymer into a metal–organic framework (MOF) host, the advantages of both components work synergistically to create a composite that efficiently fixes carbon dioxide to transform various epoxides into cyclic carbonates. The resulting material retains high yields under mild conditions with full reusability. By quantitatively studying the kinetic rates, the activation energy was calculated, for a physical mixture of the catalyst components to be about 50 % higher than that of the composite. Through the unification of two catalytically active components, a new opportunity opens up for the development of synergistic systems in multiple applications.  相似文献   

19.
The glass and melting transitions of poly(ethylene terephthalate-co-p-oxybenzoate)s have been studied by differential scanning calorimetry. Despite the higher glass transition expected for polyoxybenzoate, there is almost no change in the glass transition temperature up to 63 mol % oxybenzoate (353 ± 4 K). At high oxybenzoate concentration there seems to be a discontinuous jump to a glass transition of 450 K. This high glass transition has been observed in two-phase materials down to 30 mol % oxybenzoate. The melting transition shows signs of isodimorphism with a minimum in melting temperature at about 60–70 mol % oxybenzoate, 60 K below the melting temperature of poly(ethylene terephthalate). The thermal properties are little affected by the change of the noncrystalline parts of the molecules to a mesophase structure. The transition to the isotropic phase could not be analyzed because of prior decomposition.  相似文献   

20.
Load conditions used typically for fatigue life investigations can differ strongly from the conditions for real rubber products. For example, the frequency of the laboratory measurements is increased and the product load curve is simplified to a sine. In this paper, industrial rubber blends (SBR/BR/NR blends) under tension–compression load are used. First, the influence of a higher frequency (5 Hz) compared to the product relevant frequency (1 Hz) is investigated. A higher frequency does not influence the fatigue life but certainly the sample temperature and material behaviour. This is further investigated by varying the ambient temperature for 1 Hz measurements and the strain rate. Second, a non-sinusoidal wave form depicting the product loading case is selected. The load oscillates between tension and compression with dwell periods in every cycle. The results are comparable to those of a sine wave with the same frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号