首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
自修复材料作为一种拥有结构上自愈合能力的智能材料近年来得到了快速发展。具备自修复性能的聚合物材料主要包括外援型和本征型。由于本征型自修复聚合物材料具有潜在的自修复能力,且能实现多次修复,所以该领域对于本征型自修复聚合物材料的关注越来越多。由氢键、π-π堆积、疏水作用、离子作用和主客体作用等非共价键力形成的本征型自修复聚合物体系不需要或需要极少外界能量就能实现快速、高效修复。这将是实现节约能源,社会可持续发展的重要途径。本文以不同类型的非共价键为线索,综述了近年来基于非共价键的本征型自修复聚合物材料的发展及其应用,并展望了其未来的发展方向。  相似文献   

2.
自修复材料可以修复其在外界环境因素作用下产生的局部创伤或微裂纹,大大延长材料的使用寿命.将自修复聚合物作为固态聚合物电解质应用于锂离子电池,可以显著提高锂离子电池的循环稳定性和安全性,延长使用寿命.本文首先概述了自修复聚合物材料的发展历程和修复机理,然后按超分子相互作用和动态共价键分类总结了本征型自修复聚合物电解质应用于锂离子电池的研究进展,最后对自修复聚合物电解质存在的问题和未来的发展方向做出了展望,为下一代高安全性、高性能和长使用寿命的锂离子电池的研究提供借鉴.  相似文献   

3.
祁恒治  赵蕴慧  朱孔营  袁晓燕 《化学进展》2011,23(12):2560-2567
针对聚合物材料在使用过程中难以检测的损伤,人们引入了自修复概念。本文就近年来自修复聚合物材料的研究进展作了系统综述。根据自修复过程是否使用修复剂,聚合物材料(包括聚合物基复合材料)的自修复可分为外援型和本征型两大类。外援型自修复借助于外加修复剂实现自修复,主要包括埋植微胶囊化修复剂和埋植中空纤维化修复剂两种方法。微裂纹的破坏使微胶囊或中空纤维释放修复剂,修复剂发生化学反应,键合裂纹面,达到自修复的效果。这种方法相对比较简单,修复效果较好,但不能重复进行,而且可选用的修复剂种类有限。本征型自修复则借助于体系内存在的Diels-Alder反应、动态共价化学、双硫键反应、含有氢键的超分子结构、π-π堆叠及离子聚合物等来完成,这些特殊的分子结构所涉及的化学反应是可逆的。本征型自修复聚合物材料的制备过程较为复杂,但这种自修复可以反复多次有效,从而延长了聚合物材料的使用寿命。本文针对以上两大类自修复聚合物材料体系的特点和应用进行综述,并展望其发展方向。  相似文献   

4.
自愈合聚合物材料是受自我修复生物体系的触发而发展的,这是一个新兴迷人的研究领域,可以明显拓宽聚合物材料的工作寿命和广泛应用的安全性.文章是《自愈合聚合物材料的研究进展Ⅰ.传统修复方法及热固性自愈合材料的制备和表征》的续篇,进一步介绍可自我修复的热塑性高分子材料的愈合机理.  相似文献   

5.
作为一种高分子智能材料,自愈合凝胶在解决软材料损伤修复以及凝胶-生物体组织之间的界面接口问题,实现软材料智能化、高效化和环境友好化具有重要意义.近年来利用动态建构化学的基本原理,通过动态非共价键、可逆动态共价键相互作用,设计了一系列具有良好自愈合性能的新型凝胶材料.本文以物理型和化学型动态自愈合凝胶为例,综述了自愈合凝胶的分子设计思路、性能,并分析了影响自愈合性能因素,并对其未来的发展进行了展望.  相似文献   

6.
自修复高分子材料   总被引:1,自引:0,他引:1  
李思超  韩朋  许华平 《化学进展》2012,24(7):1346-1352
高分子材料制造和使用过程中,经常由于内部的微裂纹和局部损伤,而导致性能下降,影响使用寿命。自修复高分子材料模仿生物体损伤愈合的原理,自行发现裂纹并通过一定机理自行愈合,是一种有着广泛应用需求的高分子智能材料,包括含修复剂型和不含修复剂型两类。它的特点在于自动化、精准化。本文旨在结合近年来最新的研究成果,介绍并归纳多种典型的自修复体系,总结各种优化手段,并针对已发展的自修复材料存在的局限性,对其研究前景进行合理的展望。  相似文献   

7.
超分子聚合物复合材料定义为纤维、填料等增强体均匀分散在超分子聚合物基体中的复合材料。根据超分子聚合物与增强体之间化学键连接的不同可分为三种类型:(1)无化学键;(2)共价键;(3)非共价键。超分子聚合物复合材料与分子聚合物复合材料共同组成了完整的聚合物复合材料体系。本文综述可自愈合的氢键、π-π堆叠和金属配位型超分子聚合物复合材料的研究进展。  相似文献   

8.
自愈合聚合物材料是受自我修复生物体系的触发而发展的,这是一个新兴迷人的研究领域,可以明显拓宽聚合物材料的工作寿命和广泛应用的安全性.参考近年来的文献资料,文章着重介绍了传统的修复聚合物材料的方法,以及各种热固性自愈合材料的制备和表征,其中最主要的制备方法是中空纤维法和微胶囊法.  相似文献   

9.
结构用自修复型高分子材料的制备   总被引:2,自引:0,他引:2  
章明秋  容敏智 《高分子学报》2012,(11):1183-1199
自修复型高分子材料属于智能材料的一类,仿照生物体损伤自愈合的功能,通过材料内部的自诊断和自响应机制,及时修复材料在成型加工或使用过程产生的微小裂纹,避免其进一步扩展.近年来本课题组针对结构用自修复型高分子材料的强度恢复问题,综合利用高分子化学、高分子物理、材料力学等学科的理论和方法,设计、合成了一系列外植型和本征型自修复高分子材料,提出的自修复策略适用于典型热固性和热塑性高分子材料.此外,深入研究了相关的合成路线、配方优化、制备工艺、材料结构与性能、自修复的微观机制、使用稳定性等,为此类材料的实际应用提供依据.  相似文献   

10.
自修复材料的概念源于对生物体自愈合现象的仿生研究,该类材料在受到损伤时可进行自修复并恢复一定程度的力学等性能。对高分子材料而言,其受机械力损伤后一般发生大分子链均裂或异裂而使材料产生微裂纹,此类微裂纹很难探测,而微裂纹的产生往往会引起高分子材料失效,因此快速修复微裂纹对诸多工程领域的高分子材料来讲尤为重要。本文从外源型及本征型自修复高分子材料两个方面,综述了近五年自修复高分子材料的研究进展,并对其今后发展进行了展望。  相似文献   

11.
This review is about the reactive plasticizer. Plasticizers are small molecules with low molecular weight. These compounds typically have an esteric structure. The plasticizers reduce the glass transition temperature, and the viscosity of the polymer also enhances the flexibility and processability of polymer materials. The main problem of these additives is that, over time, they migrate from the polymeric matrix and exude to the surface of polymeric matrix. As a result, the physical and mechanical properties of the polymer are affected. Various strategies, such as increasing molecular weight of plasticizer, selection of oligomeric structure for plasticizer, and adding nanoparticles of minerals, have been investigated to reduce and eliminate migration. An approach that has recently been of great interest to researchers is the use of reactive plasticizers. In this approach, plasticizers covalently bond to the polymeric chains and prevent migration.  相似文献   

12.
Oxime-urethane bond featuring with high reversibility even at room temperature and multiple reactivity is an emerging dynamic covalent bond, and has shown great potential for self-healing polymers, which are one of the most attractive development directions for next generation of polymeric materials. In this review, recent progresses on the oxime-urethane-based self-healing polymers, including their designs and applications in diverse fields such as biomedicine, flexible electronics, soft robots, 3 D printing, protective materials, and adhesives, are summarized, and outlooks on the future development of this field are discussed.  相似文献   

13.
Main methods for the modification of epoxy composites that aim to increase their impact and crack resistances are considered with the main attention focused on modification with the use of thermally stable thermoplastics as additives. The influence of various factors (the modifier–matrix chemical bond and the morphology and molecular weight of the modifier) on the physicomechanical characteristics of the composites is discussed. New approaches to the toughening of polymeric composite materials based on epoxy thermosets that involve the use of modified binders or the introduction of a modifier between layers of the composite prepreg are advanced.  相似文献   

14.
Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The autonomic self-healing materials based on microcapsules have made major advancements for the repairing of microcracks in polymers and polymer composite systems. Self-healing encapsulated materials have the inborn ability to heal polymeric composites after being damaged by chemical and mechanical progressions. These intelligent micro-encapsulated self-healing materials possess great capabilities for recovering the mechanical as well aesthetic properties and barrier properties of the polymeric structures. Based on real world observations and experimental data, it is believed that microcracks and microcracking in polymeric materials can result because of many chemical and physical routes and is one of the foremost critical issues for polymeric materials. Especially in polymeric coatings, these microcracks can lead towards disastrous failure, and conventional healing systems like patching and welding cannot be used to repair microcracks at such a micro-level. Self-healing materials, especially, capsule based self-healing materials is a new field sought as an alternative to the conventional repairing techniques, requiring no manual intrusion and uncovering. This review covers the basic and major aspects of the microencapsulated self-healing approach like the effect of synthesis parameters on the size of microcapsules, healing efficiency determination, and the potential of the existing developed microencapsulated agents.  相似文献   

16.
Functional polymers are widely employed in various areas of biomedical sciences. In order to tailor them for desired applications, facile and efficient functionalization of these polymeric materials under mild and benign conditions is important. Polymers containing reactive maleimide groups can be employed for such applications since they provide an excellent handle for conjugation of thiol‐ and diene‐containing molecules and biomolecules. Until recently, fabrication of maleimide containing polymeric materials has been challenging due to the interference from the highly reactive double bond. A Diels‐Alder/retro Diels‐Alder reaction sequence based strategy to transiently mask the maleimide group provides access to such polymeric materials. In this personal account, we summarize contributions from our group towards the fabrication and functionalization of maleimide‐containing polymeric materials over the past decade.  相似文献   

17.
The use of polymeric materials in ion-exchange chromatography applications is advantageous because of their typically high mechanical stability and tolerance of a wide range of pH conditions. The possibility of using polymeric monoliths in ion-exchange chromatography is therefore obvious and many of the same strategies developed for polymeric particles have been adapted for use with polymeric monoliths. In this review different strategies for the synthesis of polymeric monoliths with ion-exchange functionality are discussed. The incorporation of ion-exchange functionality by co-polymerization is included, as also are different post-polymerization alterations to the monolith surface such as grafting. The formulations and strategies presented include materials intended for use in analytical separations in ion-exchange chromatography, sample pre-treatment or enrichment applications, and materials for capillary electrochromatography. Finally, examples of the use of polymeric monoliths in ion-exchange chromatography applications are included with examples published in the years 2003 to 2008.
Emily F. HilderEmail:
  相似文献   

18.
Advantages of repair technologies based on the use of adhesive materials are shown. Basic properties are given for adhesive materials used in repair operations, namely, epoxy-based metal-filled materials; film adhesives and adhesive prepregs; anaerobic repair compositions based on caoutchoucs and acrylates; and epoxy, acrylate, and urethane acrylates used for adhesion under conditions of increased humidity and under water. Some operation technologies for repair and renewal based on the use of adhesive materials are considered, namely, technologies that deal with breakdowns and preventive repairs on oil and gas pipelines, in the aviation industry (repair of honeycomb sandwiches included), in power engineering, and in the chemical and petrochemical industry, as well as those that solve relevant problems of car repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号