首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
聚合物共混物的相容性及相分离   总被引:13,自引:0,他引:13  
赵孝彬  杜磊  张小平  郑剑 《高分子通报》2001,14(4):75-80,F3
综述了聚合物共混物相容性和相分离的研究现状。介绍了聚合物共混物的相容性理论、影响相容性的因素及改善相容性的方法和表征相容性的手段。聚合物共混物的相分离机理制约着材料的性能,旋节分离和成核-增长相分离分别形成不同的形态结构。旋节分离和成核-增长相分离所对应的动力学过程是不同的,散射光强与相分离时间分别满足指数和幂指数关系。  相似文献   

2.
介绍了用结晶动力学分析的方法评价含结晶聚合物共混物的混合状态的基本理论和解析原理,综述了最新研究进展。  相似文献   

3.
提高聚合物共混相容性的反应性聚合物   总被引:2,自引:0,他引:2  
反应性聚合物作为聚合物共混的增容剂受到越来越广泛的重视。本文论述了该类反应性聚合物的制备,分类及研究开发现状,并结合实例讨论了其增容作用效果。  相似文献   

4.
聚合物共混物相容性的研究进展   总被引:3,自引:0,他引:3  
相容性聚合物共混物由于其优异的复合性能已成为新材料的主要研究方向。但许多共混物是互不相容的 ,因此必须改善它们的相容性。文章综述了聚合物共混物相容性研究的现状与发展 ,介绍了各种增容方法及其应用  相似文献   

5.
聚合物的拉伸流动在吹膜、纺丝、热成型等加工中扮演着支配的角色,因此掌握聚合物熔体在拉伸条件下的流动行为对于控制和预测其加工性能具有重要意义。相对于剪切流动,拉伸粘度对于大分子的结构、填充粒子的各向异性、共混物中两相的结构等更加敏感。本文简要介绍了当前用于拉伸流变研究的常用装置及其原理,并举例描述了单一组分聚合物、聚合物纳米复合材料和聚合物共混物等体系拉伸流变研究的现状和成果,最后指出了当前拉伸流变研究领域存在的一些不足之处并进行了展望。  相似文献   

6.
聚合物共混:Ⅰ.聚合物共混物的制备方法   总被引:4,自引:0,他引:4  
本讲主要介绍聚合物共混物的制备方法,其中包括熔融共混、溶液共混、胶乳共混、冷冻干燥共混、接技共聚共混、互穿聚合物网络、就地反应型共混、分子共混等.  相似文献   

7.
<正> 聚甲基丙烯酸甲酯(PMMA)是典型的辐射裂解型聚合物。经辐照后,PMMA主链发生无规断裂。在聚合物共混体系中,PMMA是否能发生交联,这是辐射化学中一个非常重要的研究课题之一,也是一项探索性工作。 PMMA-PEO共混体系是可以分子水平共溶的体系。本文试图将共混体系的相容性与共混体系中的裂解型聚合物的辐射效应联系起来,讨论PMMA-PEO共混体系的辐射交联。  相似文献   

8.
通过苯乙烯(S)及甲基丙烯酸正丁酯(nBma)分别与少量的甲基丙烯酸(Maa)和马来酸酐(Man)共聚,从而在聚苯乙烯(PS)及聚甲基丙烯酸丁酯(PBma)链上分别引入了功能基因羧酸基和酸酐基,制得共聚物SMaa、BmaMaa、sMan及BmaMan.通过将这些共聚物分别交换上金属离子制备得相应的离聚物(Ionomer)及其共混物.红外光谱(IR)、差示扫描量热法(DSC)及透射电镜(TEM)的研究结果表明,共混物两组分均具有同种(负)电荷时,仍表现明显的增容作用.  相似文献   

9.
通过苯乙烯(S)及甲基丙烯酸正丁酯(nBma)分别与少量的甲基丙烯酸(Maa)和马来酸酐(Man)共聚,从而在聚苯乙烯(PS)及聚甲基丙烯酸丁酯(PBma)链上分别引入了功能基因羧酸基和酸酐基,制得共聚物SMaa、BmaMaa、sMan及BmaMan.通过将这些共聚物分别交换上金属离子制备得相应的离聚物(Ionomer)及其共混物.红外光谱(IR)、差示扫描量热法(DSC)及透射电镜(TEM)的研究结果表明,共混物两组分均具有同种(负)电荷时,仍表现明显的增容作用.  相似文献   

10.
<正> 聚酰亚胺是一种性能极其优异的高性能树脂,它在许多高技术领域有着极其重要的应用价值。在80年代以前,人们工作的重点是合成出一系列分子结构不同的聚酰亚胺,研究分子结构与性能间的关系,开发聚酰亚胺新品种。自80年代后期,有关高性能树脂聚酰亚胺共混物的研究日益引起人们的关注,其中有关不同分子结构的聚酰亚胺/聚酰亚胺共  相似文献   

11.
介绍了国外80年代以来开展的剪切流动对聚合物共混物相容性影响的研究概况,并着重介绍了采用最新的二维小角激光散射流变仪和光学显微流变仪对共混物体系在剪切应力作用下相行为的研究结果,反映了该前沿领域的最新进展。  相似文献   

12.
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy () between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/homopolymer blends. Furthermore, the investigation of the average end-to-end distance () in different systems indicates that the copolymer chains tend to coil with the decrease of whereas the of the homopolymer chains depends on the chain structure of the copolymers. As for the system containing the alternating or the random copolymers, the homopolymer chains also tend to coil with the decrease of . However, for the systems including the block copolymers, there is a slight difference in the of the homopolymer chains with the variation of .  相似文献   

13.
用于聚合物共混体系的共聚物增容剂   总被引:4,自引:0,他引:4  
在不相容多相聚合物体系中,共聚物增容剂的存在将对共混物的形态结构及力学性能产生极大的影响,它们的作用是增强相间粘合力,减小相表面张力。本文系统论述了共聚物增容剂的分子设计及其分子特性对增容效果的影响,并分别讨论了反应型及非反应型共聚物增容剂的近期发展。  相似文献   

14.
The inherent miscibility and effects of reaction-induced changes on the phase behaviour of blends of poly(trimethylene terephthalate) (PTT) with bisphenol-A polycarbonate (PC) were studied. The as-prepared (solution-cast) blends exhibited two well-spaced and separated glass transition temperatures (Tgs) and a heterogeneous phase-separated morphology, indicating an immiscible system. However, after annealing at high temperature (at 260 °C), the blends original two Tgs merged into one single Tg, and the annealed blends exhibited a homogeneous morphology, and turned from having a semicrystalline into having an amorphous nature upon extended annealing. The annealing-induced changes of phase behaviour in the blends were analyzed. The homogenization process of the blends upon heating is attributed to chemical transreactions between the PTT and PC chain segments, as evidenced with FT-IR characterization. The IR result showed a new aryl C-O vibration peak at 1,070 cm–1 for the annealed blends, which is characteristic of an aromatic polyester structure formed from exchange reactions between PTT and PC. The transreactions between PTT and PC led to a random copolymer comprised of PC/PTT segments, which is believed to serve as a compatibilizer at the beginning stage of transreactions, but at later stage, the random copolymer became the main species of blends and turned to a homogeneous and amorphous phase.  相似文献   

15.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

16.
Solvent effects on phase behavior in blends were examined. Misinterpretation might be resulted if effects of solvent were not properly evaluated and avoided. Solvent effects were found to influence to widely different levels on blend systems comprised of poly(4-vinyl phenol) (PVPh) and a homologous series of polyesters of different CH2/CO ratios. Confusion and misinterpretation in phase behavior between miscibility and immiscibility with upper-critical-solution-temperature (UCST) could be resulted if solvent effects were not fully excluded from true thermodynamic phase behavior in the blends. However, apparent solvent effects on interfering true phase behavior were found in the blends of PVPh with several polyesters whose structures led to borderline miscibility. Superficially, the blends prepared by solvent casting behaved similarly to phase-separated blends with UCST. By comparison, regardless of methods of blend preparation, the miscibility was straightforwardly proven for the blends of PVPh with poly(hexamethylene adipate) (PHA) that possesses an average CH2/CO ratio = 5.0 located on the center of window, and the phase behavior of PVPh/PHA blends is largely free of solvent interference. Care must be exercised in interpretation of phase behavior by excluding the solvent effects, especially for those blends with borderline miscibility with weak interactions.  相似文献   

17.
A series of PA11/PHAE blends was prepared by melt mixing across the full composition range. Films were obtained for each composition by an extrusion-cast process keeping the same processing conditions. The blends exhibited a two phase morphology. PHAE-rich nodules surrounded by the PA11-rich matrix were observed for PA11 contents higher than 50 wt% in the blends. For lower PA11 weight amounts, PA11 became the dispersed phase and appeared as long fibrillar domains lying in the plane of the film. PA11/PHAE interactions were discussed from DSC and DMA analyses. The effects of the blend composition and morphology on mechanical properties in the linear range and on hydrogen barrier properties were investigated. Hydrogen permeability decreased with increasing amount of PHAE in the blends. A confrontation between the experimental permeability values and the theoretical ones calculated by taking account of the specific properties and morphology of the PA11- and PHAE-rich phases was carried out. In the films series under study, the improvement of hydrogen barrier properties was mainly related to the blend composition whereas a significant effect of the blend morphology was observed on mechanical properties in the rubbery state.  相似文献   

18.
<正> The miscibility of poly (ethylene terephthalate (ET) -- caprolactone (CL) (TCL)/poly(ethylene terephthalate) (PET) blends were examined by Differential Scanning Calorimeter(DSC). In these blends, a miscibility limit specified by ET content in the TCL was found tobe about 70 (wt%). In the blends of TCL/TCL with different ET contents, a miscibilitywindow defined by ET content was also found to range from 82 to 58 (wt%). Based on theexperimental miscibility limits and the mean field binary interaction model, the interactionparameter between monomeric units of ET and CL was obtained.  相似文献   

19.
<正> 近年来,有关高性能树脂聚酰亚胺共混物的研究日益引起人们的关注。已经发现许多种分子结构不同的聚酰亚胺之间,聚酰亚胺与聚苯并咪唑,或聚醚醚酮能形成完全相容的共混体系,从而扩大了高性能树脂聚酰亚胺的应用范围。 酚酞型聚醚醚酮(PEK-C)是由我所研究开发出的一种新型的聚醚醚酮类高性能树脂,它具有良好的可溶性,优异的机械强度和加工流动性,已广泛应用于结构材料及复合材料的制备。为进一步扩大该树脂的应用范围,本实验室在PEK-C共混物的研究做了大量的工作。本工作研究了聚醚酰亚胺(PEI)/PEK-C共混体系的相容性。PEI和PEK-C的分子结构如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号