首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A combined in situ NMR and in situ ESR spectroelectrochemical study of a reaction mechanism is presented detecting and describing the whole number of paramagnetic and diamagnetic intermediates and final products in an electrode reaction. While in situ NMR spectroelectrochemistry provides a powerful method for the study of structural or electronic changes of diamagnetic molecules in any electrochemical reaction mechanism, in situ ESR spectroelectrochemistry is the method of choice to detect paramagnetic structures and to characterise their electronic state via the g-value and hyperfine splitting in redox reactions. To demonstrate the power of this combination of magnetic spectroscopies in electrochemistry, the reduction of p-benzoquinone to hydroquinone is followed by both these spectroelectrochemical methods at selected pH values, thus considering the influence of the proton on the reaction mechanism. The results of both in situ spectroelectrochemical methods at the same redox system are used to get the complete reaction mechanism of p-benzoquinone at electrodes in aqueous solutions.  相似文献   

2.
Piezoelectric transmission spectroelectrochemistry (PTSEC), i.e., the combination of electrochemistry and spectroelectrochemistry (SEC) with electrochemical quartz crystal microbalance (EQCM) technique is reported by using a normal piezoelectric quartz crystal (PQC) as an optically-transparent electrode (OTE). A theoretical relationship between the PQC response and the spectroelectrochemical response is derived and used to estimate the apparent molar absorptivity of the absorbing species deposited on the OTE on the PQC surface. The complex of copper with aspartic acid is used to test this new PQC-SEC technique. Results show that the combination of three such diverse techniques provides a very useful methodology for studying electrode processes and electrode surface characteristics in situ.  相似文献   

3.
In situ spectroelectrochemistry is of high importance for the characterization of doping reactions in pi-conjugated polymers. In this paper we present the results of simultaneous ESR and UV-vis-NIR measurements performed in situ during electrochemical p- and n-doping of polyazulene (PAz). In previous studies on p-doping of PAz the assignment of the optical absorption bands to specific charge carriers have been somewhat controversial, therefore the aim of this study is to clarify the nature of the doping-induced charge carriers and their corresponding optical absorption bands by in situ ESR-UV-vis-NIR spectroelectrochemistry. PAz was polymerized in two different potential ranges in order to obtain films with different structures and morphologies. On the basis of our spectroelectrochemical results we propose that polarons and polaron pairs are formed during p-doping in the two different types of PAz films electrodeposited on ITO. For studying n-doping of PAz, a Pt electrode was used. The ESR signal first decreased in intensity at low doping levels and then increased in intensity at higher doping levels pointing to the formation of new paramagnetic species. At high negative potentials there occurred an additional line broadening of the ESR signal indicating the existence of rather localized negative charge carriers.  相似文献   

4.
Ashley K 《Talanta》1991,38(11):1209-1218
Infrared (IR) spectroelectrochemical techniques have seen extensive use in studies of electrode surface processes. They have also been employed, albeit less frequently, to investigations of redox species dissolved in solution. The application of IR spectroscopy to electrochemical solution processes represents a special challenge, for absorption of IR radiation by the solvent is a significant interference to detection of vibrational modes of dissolved analytes. It is also difficult to maintain potentiostatic control of the system in specially designed thin-layer spectroelectrochemical cells. Solution IR spectroelectrochemical experiments are important for investigations of redox systems in which it is desired to spectroscopically monitor the structures of dissolved products, intermediates and reactants involved in electrode reactions. Such experiments have been conducted on biochemical, inorganic, organic, and other systems. In this paper some examples of applications of IR spectroelectrochemical studies of solution species in the above areas are presented, and experimental aspects are discussed.  相似文献   

5.
乙醇在钯电极上的电氧化机理   总被引:2,自引:0,他引:2  
方翔  沈培康 《物理化学学报》2009,25(9):1933-1938
利用循环伏安与现场傅里叶变换红外(FTIR)光谱对乙醇在Pd电极上的电氧化机理进行了研究. 循环伏安测量表明, 乙醇在Pd上氧化的性能受pH值与乙醇浓度的影响. 当溶液pH>11.0时, Pd对乙醇才具有催化性能, 而且乙醇在Pd上氧化的性能随着pH值和乙醇浓度的增加而提高. 现场红外光谱电化学测量结果证明, 乙醇在不同pH 溶液中的氧化反应机理和产物不同. 当溶液pH>13.0 时, 产物只有乙酸盐, 说明乙醇仅发生部分氧化, 乙醇中的C—C键没有断裂. 当溶液pH≤13.0时, 尽管乙醇在Pd电极上的氧化活性受到抑制, 却发生完全氧化而产生二氧化碳, 说明乙醇的C—C键在低碱环境中容易断裂, 最后乙醇被完全氧化. 实验中没有检测到CO, 表明该反应途径是一个非毒化过程.  相似文献   

6.
The application of in situ ESR–UV/VIS/NIR spectroelectrochemistry to the highly purified C82:3 fullerene isomer with C2 symmetry made the detailed characterization of the radical structures formed by electrochemical generation possible. This first comprehensive spectroelectrochemical study of the stable radical anion and cation of an empty cage higher fullerene in acid-free organic electrolyte is a contribution to the general understanding of charged states at endohedral fullerenes.  相似文献   

7.
普鲁士蓝膜修饰铂电极的现场拉曼光谱电化学表征(英文)   总被引:2,自引:0,他引:2  
采用现场拉曼光谱电化学技术表征了普鲁士蓝膜修饰铂电极的循环伏安过程 .结果显示 ,随着修饰膜的微观结构由普鲁士蓝向普鲁士白或相反过程转化 ,表征两种不同结构的拉曼特征振动谱峰及其强度变化呈现出明显的可逆特征 .  相似文献   

8.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

9.
Tyson JF 《Talanta》1986,33(1):51-54
Analytical applications of spectroelectrochemistry are limited by the short path-length, in the absorbing medium, that can be produced with most light-beam/electrode configurations. This disadvantage is overcome for grazing incidence. A cell fitted with glassy-carbon electrodes and used in a conventional spectrophotometer is described and applied to model systems illustrating the use of (a) homogeneous redox reactions, (b) homogeneous redox reaction followed by chemical reaction and (c) electro-deposition followed by stripping into a reagent solution. This last technique is the spectroelectrochemical analogue of anodic-stripping voltammetry.  相似文献   

10.
应用循环伏安法、现场紫外可见光谱电化学方法及现场FT—IR光谱电化学方法研究了标题配合物不同氧化态的电位及光谱特征,指认了各步电极反应发生的点位,研究了硝基对不同氧化态金属卟啉电学性质、光谱性质的影响  相似文献   

11.
A combination cell to accomplish simultaneous electrochemical and spectroelectrochemical measurements under both thin-layer and semi-infinite diffusion conditions is described and characterized. Fibre optics and a reflective electrode are used to couple the cell to the spectrophotometer. This allows different electrode materials to be used. Moreover, the cell is thermostatically controlled and equipped with a magnetic stirrer, and can be used for temperatures down to −40°C.The application of electrochemical pulse and sweep techniques are demonstrated. Dynamic spectroelectrochemical techniques such as linear sweep and cyclic voltabsorptometry (LSVA and CVA) as well as the corresponding derivative voltabsorptometric techniques derivative linear voltabsorptometry (DLSVA) and derivative cyclic voltabsorptometry (DCVA) are also applicable under thin-layer conditions. DLSVA and DCVA are the optical analogues of linear sweep and cyclic voltammetry. No epoxy cement or other sealing compounds are required and the solution comes in contact with only quartz, Teflon and the electrodes. Under aprotic conditions the cell response is in accordance with theory down to a solution thickness of 15 μm, where rapid exhaustive electrolysis intrinsic to thin-layer electrochemistry can be achieved in less than 1 s.The electrochemical and spectroelectrochemical characterization of the cell demonstrated that this design is very well suited to different electrochemical pulse and sweep techniques with simultaneous spectroscopic characterization of reaction products under finite and semi-infinite diffusion conditions in organic solvents. This offers the opportunity for cross-correlations of the electrochemical and spectroscopic information, which should lead to more reliable results. The adjustment of different thin-layer thicknesses is highly reproducible and the exchange of the solution inside the thin-layer cavity with the bulk solution after each thin-layer experiment can be easily performed. The electrochemical behaviour of the cell is in accordance with theory for cyclovoltammetric measurements under both bulk and thin-layer conditions. Derivative voltabsorptometric techniques are applicable and the response of the cell is in accordance with theory, particularly under finite diffusion conditions. The use of a bifurcated optical fibre bundle allows a more flexible experimental arrangement, and the application of a triple split bundle for the investigation of light-sensitive electron-transfer compounds [34,35] is in progress. The third end of the optical fibre bundle will be used to apply additional selective irradiation to convert electron-transfer-active photochromic compounds inside the thin-layer cavity depending on the redox state.An additional aspect of the current investigations is the application of the present cell for electrogenerated chemiluminescence (ECL) [36,37]. The highly reflecting electrode and the integrated stirrer are advantageous for this type of measurement. Finally, further work is in progress to utilize the integrated temperature control of the cell for spectroelectrochemistry at low temperatures, particularly with more unusual solvents like liquid sulphur dioxide [38] and liquid dimethylamine [39].  相似文献   

12.
The influence of the molecular structure on the stabilization of charged states was studied in detail by in situ ESR UV-vis NIR spectroelectrochemistry at a novel α,ω-dicyano substituted β,β'-dibutylquaterthiophene (DCNDBQT) and the electrochemically generated cation and anion radicals have been proved for the first time. The voltammetry of DCNDBQT results in two separate oxidation steps with the reversible first one. The experimental absorption maxima at 646 and 1052 nm together with the calculated ones (by DFT method) as well as an ESR signal at the first anodic step prove the presence of a radical cation. Three additional optical bands (554, 906, and 1294 nm for CT-transition) can be attributed to the formation of cation radical dimer. The dicationic structure formed in the second oxidation step is not stable. The stabilization proceeds via a dimer formation in two chemical follow-up reactions. The existence of the dimeric structures was proved by ex situ MALDI TOF mass spectrometry. As the substitution by cyano groups opens the route to cathodic reductions, DCNDBQT shows a single quasi-reversible reduction step. Here, the in situ ESR UV-vis NIR spectroelectrochemical measurements and theoretical calculations let us confirm the electrochemical generation of an anion radical. As we found a low number of anion radicals by quantitative ESR spectroelectrochemistry and an appearance of additional bands in the UV-vis NIR absorption spectra, the formation of dimeric structures must be considered and was corroborated by mass spectrometry. The role of dimerization in the reaction mechanism of the DCNDBQT oxidation and reduction are discussed in general. The experimental results were interpreted using the quantum chemical calculations based on density functional theory.  相似文献   

13.
A new long-optical-pathway spectroelectrochemical cell for absorptometric measurements in the UV–Vis region was developed. This cell consists of two optical fibers brought face to face and fixed on the working electrode support. As a proof of concept, the spectroelectrochemical cell was applied to the determination of catechol using a press-transferred single-walled carbon nanotube film as the working electrode. Voltabsorptometry was demonstrated to be very helpful in understanding the mechanism of catechol oxidation. The experiments showed that the main oxidation product is o-benzoquinone, but other soluble side products are also observed. Multivariate calibration explains the selection of 390 nm as the best wavelength for the univariate absorptometric determination of catechol, avoiding the interference of oxidation side products. Catechol was quantified using both the electrochemical and the spectroscopic signal, demonstrating that this hybrid technique is an autovalidated analytical method. Dual detection of catechol was also carried out using amperometric spectroelectrochemistry. Finally, spectroelectrochemistry was used to quantify catechol in the presence of hydroquinone.  相似文献   

14.
间苯二胺的电化学及紫外-可见薄层光谱电化学研究   总被引:3,自引:0,他引:3  
研究了间苯二胺(MPD)在金电极和SnO2;F膜电极上的循环伏安行为及在SnO2;F膜电极上的紫外-可见薄层光谱电化学性质.获得了间苯二胺在SnO2;F膜电极上电氧化的薄层恒电势电解-吸收光谱图,采用双对数法对紫外-可见薄层光谱电化学数据进行了处理.研究了间苯二胺的光谱及电化学性质,求得了间苯二胺的动力学修饰式量电位E0和αn等热力学参数.  相似文献   

15.
Over the past years, great attention has been given to the developments of boron-doped diamond (BDD) materials in various fields because of the advantages of electrochemical features, such as large potential range and low background current. This minireview aims to present the recent progress of in situ electrochemical spectroscopy for BDD electrode reactions. After a concise state of the widely used in situ electrochemical spectroscopy techniques, including in situ electrochemical Raman, infrared, and electron paramagnetic resonance spectroscopy, the current progress of BDD electrode reactions using in situ electrochemical spectroscopy has been summarized. Finally, challenges and perspectives for the tendency of the BDD study via in situ electrochemistry are provided, of which several potential electrochemical combined technologies relating to the mechanism exploration of BDD are proposed.  相似文献   

16.
The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand canonical ensemble (GCE) have enabled to explicitly include and control the electrode potential in first principles calculations. In this review, recent advances and future promises of GCE density functional theory and rate theory are discussed. Particular focus is devoted to considering how the GCE methods either by themselves or combined with model Hamiltonians can be used to address intricate phenomena such as solvent/electrolyte effects and nuclear quantum effects to provide a detailed understanding of electrochemical reactions and interfaces.  相似文献   

17.
This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces. Dedicated to the 85th birthday of John O’M. Bockris  相似文献   

18.
《Electroanalysis》2003,15(14):1198-1203
A portable spectroelectrochemical instrument capable of performing in situ sensing has been developed, extending the applicability of spectroelectrochemistry for chemical sensing. All components of the instrument were designed to facilitate real‐time simultaneous display of optical and electrochemical data for remote spectroelectrochemical measurements. Prior to this point in time, spectroelectrochemical measurements were confined to a laboratory setting, and remote analysis was not possible using custom or commercially available instrumentation. The novel instrumentation includes a software package for a portable computer, a small (paperback book sized) optical and electrochemical control unit, and an even smaller remote potentiostat. When the remote potentiostat is operated using fiber optic communication coupled with nine volt battery operation, the unit may operate for finite amounts of time at distances limited only by the attenuation of light in the optical fiber. Comparative studies of the custom instrument with commercially available electrochemical instrumentation were performed and showed excellent agreement. This unit was also tested using the ferricyanide/ferrocyanide reversible electrochemical couple by comparing it to bench top spectroelectrochemical instrumentation previously developed by our group.  相似文献   

19.
运用循环伏安法(CV)和原位紫外-可见光谱电化学法研究了苯胺(AN)和邻甲氧基苯胺(OMA)单独聚合及二者共聚的电化学过程。在1.0 mol/L HCl溶液中,AN和OMA单独聚合及二者共聚时不同的电化学行为表明AN和OMA之间产生了共聚作用。原位紫外-可见光谱的研究表明,在AN与OMA的共聚过程中,AN和OMA首先分别被氧化生成其阳离子自由基,然后,AN和OMA的阳离子自由基与溶液中的AN和OMA单体发生交互反应产生混合二聚物中间体,在紫外-可见吸收光谱中对应于440 nm处的吸收峰。进一步研究发现,AN和OMA的共聚过程与溶液中各单体的浓度比有关,当混合溶液中OMA的浓度较大时,会对共聚产生抑制作用。采用红外光谱技术对共聚物进行了表征并初步探讨了共聚机制。结果表明,在AN和OMA共聚过程中,OMA分子掺杂进入AN聚合物骨架。  相似文献   

20.
《Electroanalysis》2005,17(11):959-964
This article reports in situ FTIR monitoring of electrochemical reactions using a silicon‐based thin‐layer cell realized by micromachining fabrication technologies. The proposed device contains a silicon micromachined cavity cell integrated with a gold working electrode, a counter electrode, and a Ag/AgCl reference electrode. Electrochemical, spectroscopic, and spectroelectrochemical characteristics of the fabricated cell have been experimentally measured and exhibited a comparable performance to commercialized CaF2 thin‐layer cells. In situ spectroelectrochemical characteristics have been successfully tested for both 2 mM K3Fe(CN)6 in an aqueous solution and 2 mM ferrocene in a dichloromethane solution using the fabricated thin‐layer cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号