首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
包头磁尾矿稀土浸出和制备冰晶石的研究   总被引:1,自引:0,他引:1  
包头白云鄂博矿床产生大量磁尾矿,会产生很大的环境问题。采用纯碱焙烧法对其进行了稀土浸出实验和氟的资源化利用研究。实验结果表明,包头磁尾矿与纯碱混合物于700℃焙烧1.0 h,经稀盐酸洗涤后,以3.0 mol.L-1稀硫酸于65℃下浸出4.0 h,氟的洗脱和稀土浸出效果较好,其中稀土浸出率为97.97%,氟浸出率为99.54%,氟洗脱率为77.32%。以该条件下产生的含氟废水为原料,于90℃下制备了冰晶石,溶液中氟回收率为85.63%,并推算出磁尾矿中氟的总利用率为66.21%。该法使磁尾矿由废弃物变为二次资源成为可能。  相似文献   

2.
磁尾矿是包头白云鄂博矿经磁选后产生的尾矿,含有大量的稀土和氟资源,对其开发利用具有重大的环境和经济价值。利用F-B强的配位能力采用硼化物焙烧抑氟-盐酸浸出法,以硼砂为抑氟剂,650℃焙烧1.0 h后,稀土矿中RE-F的结合能力被高温下活泼的B弱化,焙烧混合矿继续在80℃条件下4.0 mol·L-1HCl中浸出3.0 h,氟浸出率为96.52%,稀土最大浸出率为76.68%。同样采用P204对浸出液进行萃取,稀土进入有机相,实现了氟、稀土的两相分离,萃余液中添加K+并调节pH,沉淀得氟硼酸钾,产物杂质单一,基本实现了氟的资源化和稀土与氟的分离。  相似文献   

3.
CaO-NaCl-CaCl2焙烧包头混合型稀土精矿的产物经脱磷处理后,矿物中的物相主要为稀土氧化物和氟化钙。以较低浓度AlCl3作为助浸剂用HCl溶液浸出矿物,利用低浓度的Al3+与氟形成氟铝配合物,有效地帮助难溶物相氟化钙浸出,同时避免浸出过程中氟离子与稀土形成氟化稀土沉淀而造成损失。结果表明:盐酸浓度为3 mol.L-1,Al3+浓度为0.25 mol.L-1,温度为60℃,液固比为10∶1,浸出时间为60min,搅拌速度为200 r.min-1时,稀土氧化物的浸出率为70.8%,氟化钙的浸出率为55.8%。五级逆流浸出后,RE2O3的浸出率为99.6%,CaF2的浸出率达到98.5%。  相似文献   

4.
氟碳铈矿是最主要的稀土来源,而氟是制约稀土清洁化分离的瓶颈,因此在提取稀土前进行氟的分离是一种解决方案。利用氟铝间很强的配位性质,加入铝盐而发生竞争配位反应,使[CeF2]2+变为游离Ce4+后向萃取相转移,实现氟-铈分离。实验结果表明:[H+]≤1.0mol.L-1,以Al2(SO4)3或NaAlO2为氟络合剂,根据酸浸中F-含量,向浸出液中加入n(F)/n(Al)=1的Al2(SO4)3或n(F)/n(Al)=1.5的NaAlO2时,氟-铈分离效果最好。  相似文献   

5.
采用高温直接还原-磁选-(NH4)2SO4焙烧-水浴浸出的工艺流程,从低品位含稀土尾矿中提取稀土。主要考察了(NH4)2SO4配量,焙烧温度和焙烧时间等实验参数对La,Ce,Nd浸出率的影响。通过SEM-EDS,XRD和TG-DSC表征了尾矿经高温直接还原后稀土的赋存状态、不同温度(NH4)2SO4焙烧富稀土渣过程中的物相变化和浸出渣及浸出液烘干后析出晶的物相成分。结果表明:稀土尾矿经高温处理后分别得到了高品位铁精粉和富稀土渣。稀土元素主要以Ca2RE8(Si O4)6O2,CaRE2(Si O4)2硅酸盐形式存在。优化实验条件下,(NH4)2SO4与富稀土按8∶1混匀,400℃焙烧45 min,80℃热水浴浸出时间1 h,浸出液液固比10∶1,La,Ce,Nd浸出率分别为96.13%,98.88%,97.10%。经(NH4)2SO4焙烧处理后,稀土元素的最终产物变为可溶性的(NH4)RE(SO4)2和RE2(SO4)3,萤石部分转变为Ca SO4。  相似文献   

6.
稀土与天青石共伴生多金属矿主要由稀土氟碳酸盐和天青石组成,研究了含稀土和锶的混合矿的焙烧及浸出过程,考察了焙烧温度、焙烧时间、浸出初始酸浓度、浸出温度、浸出时间等对浸出率的影响,获得优化的工艺参数为:焙烧温度500℃,焙烧时间2 h,浸出初始酸浓度1.0 mol.L-1,浸出温度35℃,浸出时间1 h,稀土浸出率达95%以上,锶浸出率小于5%,几乎不进入溶液相而保留在固相浸出渣中得以分离和富集。  相似文献   

7.
研究了烧碱溶液连续焙烧分解包头混合稀土精矿综合提取有价元素制备氯化稀土的工艺。对混合稀土精矿和烧碱溶液的混合矿浆进行了不同温度的连续焙烧,研究了焙烧温度对稀土分解率、铈氧化率和氟、磷溶出行为的影响,考察了该工艺对不同稀土品位精矿的适应性。结果表明:使用56%品位的稀土精矿,300℃以上焙烧时稀土分解率达到97%以上,铈的氧化率达到93%以上。提出了包头混合稀土矿液碱连续焙烧分解、水洗除氟、盐酸分步溶解、萃取回收磷和铁,中和除钍后得到氯化稀土溶液的资源综合提取工艺,精矿中稀土、氟、磷、钙、铁和钍得到综合回收。  相似文献   

8.
以白云鄂博稀土精矿-钙化焙烧-HCl浸磷后的矿物为原料,用HCl-柠檬酸混合溶液浸出稀土并对浸渣进行了场发射扫描电镜和能谱分析。考察了HCl-柠檬酸混合溶液浸出过程中HCl用量、柠檬酸用量、反应温度、反应时间、搅拌速度及液固比对稀土、氟浸出率的影响,并采用五因素正交回归试验对工艺参数进行了优化。结果表明:在HCl浓度3.0 mol·L~(-1),柠檬酸浓度0.3mol·L~(-1),反应温度40℃,液固比9∶1,反应时间40 min,搅拌速度300 r·min~(-1)时,稀土的浸出率大于92.0%,氟的浸出率小于5.0%,实现了稀土与氟的分离。  相似文献   

9.
以包头混合型稀土精矿为研究对象,提出了一种减少H_2SO_4用量的低温活化-HCl浸出-H_2SO_4焙烧的新工艺。着重探索了活化温度与包头稀土精矿酸浸过程浸出收率之间的关系。分别考察了活化温度对HCl浸出稀土回收率、稀土总浸出回收率的影响。通过XRD和SEM的表征,探究了不同活化温度下,活化矿的组分变化情况及形貌变化情况。验证其工艺的稳定性。确定了在460℃的温度下,可以较好地将包头稀土精矿中的氟碳铈型稀土矿活化分解,并使得HCl浸出稀土回收率达到42.08%,稀土总浸出回收率达到92%以上。  相似文献   

10.
以混合型稀土精矿为研究对象,采用HCl-H2O2溶液浸出氟碳铈矿,达到独居石与氟碳铈矿分离的目的。考察了焙烧温度、盐酸浓度、液固比、双氧水用量、浸出温度、浸出时间等对稀土精矿浸出率的影响规律,并得出最佳浸出工艺条件为:焙烧温度:600℃,焙烧时间:2 h,盐酸浓度:6 mol·L-1,液固比:30∶1,双氧水用量:10 m L,浸出温度:90℃,浸出时间:90 min。通过此实验条件,稀土精矿中氟碳铈矿的浸出率达到了98.69%,使稀土精矿中的氟碳铈矿大部分进入溶液中,达到与独居石分离的目的,为浸出氟碳铈矿的工艺提供新思路。  相似文献   

11.
以包头混合型稀土精矿为原料,运用差热分析、X射线衍射分析技术及化学分析等手段,研究了Na_2CO_3-NaOH体系下焙烧温度、焙烧时间、Na_2CO_3加入量、NaOH加入量对稀土浸出率的影响。结果表明:在焙烧温度为500℃,焙烧时间为90 min,Na_2CO_3加入量为20%(质量分数),NaOH加入量为16%(质量分数)的条件下,稀土浸出率达到了99%以上。  相似文献   

12.
包钢选矿厂尾矿中含有大量稀土,可以回收利用.提出MgO焙烧-碳热氯化提取包钢选矿厂尾矿中稀士的新工艺.在该工艺中首先将尾矿与MgO混合焙烧脱氟,然后使用氯气作为氯化剂,碳作为还原剂,碳热氯化该脱氟后的尾矿中的稀土,水浸取回收稀土.考察了MgO的用量、碳热氯化时间、碳热氯化温度对稀土提取率的影响.结果表明:尾矿与Mgo焙烧后,700℃氯化反应0.5 h,氯化率高达83%.利用X射线衍射探讨了脱氟过程可能发生的反应.  相似文献   

13.
包头混合稀土精矿络合浸出的研究   总被引:1,自引:0,他引:1  
根据Al3+或Fe3+与F-能形成稳定的络合离子[AlF6]3-或[FeF6]3-,分别用HCl-AlCl3和HCl-FeCl3溶液络合浸出包头混合稀土精矿中的氟碳铈矿,并对两者进行了对比.结果表明,用HCl-AlCl3体系的精矿浸出率和稀土浸出率比用HCl-FeCl3体系的都高30%;在HCl浓度4.0 mol·L-1,Al3+浓度2.0 mol ·L-1,温度85℃,浸出时间120 min,液固比为30:1的条件下,稀土精矿中氟碳铈矿的浸出率达到了97.69%,氟碳铈矿中稀土浸出率达到了92.23%,进而使稀土精矿中的氟碳铈矿基本完全进入溶液中,达到与独居石分离的目的.  相似文献   

14.
以四川冕宁氟碳铈矿精矿为研究对象,提出了一种减少氟碳铈矿中Ce(Ⅲ)的氧化来提高稀土浸出率的新工艺。通过控制焙烧温度和焙烧助剂NaHCO_3用量,利用焙烧助剂分解产物Na_2CO_3熔融包覆矿物以减少Ce(Ⅲ)的氧化,经水洗、酸浸过程,促使氟碳铈矿中铈进入酸浸液而减少留在酸浸渣,从而实现铈的浸出回收,提高总的稀土浸出率。得到的优化工艺条件为:NaHCO_3与氟碳铈矿质量比为40%,于900℃焙烧2 h,水洗温度50℃,水洗液固比10∶1,盐酸浓度为2 mol·L~(-1),酸浸液固比为15∶1,温度75℃酸浸2 h。在此条件下,总稀土浸出率达93.23%,铈的浸出率为87.43%。  相似文献   

15.
铝改性赤泥吸附剂的制备及其除氟效能的研究   总被引:6,自引:0,他引:6  
以铝工业废矿渣为原材料,通过铝盐改性及焙烧活化处理,制备了水中除氟吸附剂。研究考察了吸附剂吸附氟能力、反应时间、pH值以及投加量对吸附效果的影响。结果表明,铝改性赤泥吸附剂具有较好的除氟效果,未焙烧铝改性赤泥吸附剂及经过200 ℃焙烧活化赤泥吸附剂的饱和吸附量分别达到68.07和91.28 mg·g-1,远高于原状赤泥的饱和吸附量13.46 mg·g-1。经吸附后出水氟含量低于1 mg·L-1的国家饮用水标准。吸附规律符合Langmuir等温方程,溶液pH值显著影响除氟效果,在溶液pH值为7~8时达到最佳去除效果。  相似文献   

16.
针对包头混合稀土精矿钠碱焙烧分解产物中氟、磷洗涤率低的问题,研究了水洗温度以及高压分解对焙烧矿中氟、磷洗涤率的影响。结果表明:常压下,水洗温度80℃,氟的洗涤率为75.65%,磷的洗涤率为40.87%;高压条件下,反应温度240℃,氟的洗涤率可达到95.11%,磷的洗涤率可达到62.85%。运用XRD,SEM-EDS分析发现:混合稀土精矿钠碱焙烧分解生成的Na_3PO_4,NaF易与Ca(OH)_2形成低熔点共熔体,胶结于稀土氧化物的边缘或者充填于其孔洞、裂隙内,是氟、磷洗涤率低的主要原因。高压反应对于稀土和氟、磷的分离具有强化作用,提高氟、磷的洗涤率。  相似文献   

17.
将钕铁硼废料与(NH_4)_2SO_4混合后焙烧,选择性回收钕铁硼废料中的稀土成分。采用单因素控制变量的方法对焙烧过程中的焙烧温度、焙烧时间、钕铁硼与(NH_4)_2SO_4混料质量比进行研究,结合稀土、铁等浸出率的影响,结果表明:焙烧温度400℃,焙烧时间120 min,钕铁硼与(NH_4)_2SO_4混料质量比1∶2,该条件下稀土可以获得较高的浸出率,约为92%,而Fe的浸出率仅为3%。通过对原料和焙烧后的产物进行热力学、扫描电镜、 X射线衍射和热重差热分析,综合分析得知钕铁硼废料中的主要成分REFeO_3, Fe_2O_3, RE_2O_3和Al_2O_3等发生硫酸化反应,生成RE_2(SO_4)_3和(NH_4)_3Fe(SO_4)_3及(NH_4)Al(SO_4)_2等。升高温度不利于REFeO_3的反应,从而抑制大部分Fe的硫酸化。经过焙烧,稀土以可溶性硫酸盐的形式存在,铁铝等杂质保持一个低的浸出率大部分留在渣中。  相似文献   

18.
稀土固体超强酸SO4^2-/TiO2/La^3+催化合成丙酸苄酯   总被引:6,自引:0,他引:6  
采用浸渍法制备了稀土固体超强酸SO2-4/TiO2/La3+,并运用IR、XRD和Hammett指示剂法对其进行了表征.以制备的固体超强酸SO2-4/TiO23+为催化剂、丙酸和苯甲醇为原料合成了丙酸苄酯.考察了催化剂的制备条件及合成条件对酯化率的影响,结果显示催化剂最佳制备条件钛前体氧化物的浸渍液为含0.07 mol·L-1 La3+的硫酸溶液,焙烧时间3 h,焙烧温度500℃.最佳反应条件醇酸摩尔比为12、催化剂用量为苯甲醇用量的9.3%、反应时间3 h、反应温度120℃,酯化率达84.0%以上.用IR、1H-NMR等手段对产品进行了表征.  相似文献   

19.
氟碳铈矿氧化焙烧-盐酸催化浸出新工艺研究   总被引:1,自引:0,他引:1  
针对氟碳铈矿盐酸处理过程中稀土浸出率低,高价值非铈稀土进入富铈渣造成高价元素低值利用,以及伴生资源氟综合利用等问题,研究开发了低温焙烧-催化浸出技术,考察了焙烧温度、浸出温度、盐酸用量、液固比及添加浸出助剂等对稀土浸出率的影响。在优化工艺条件:焙烧温度500℃,浸出温度50℃,酸矿质量比1.75∶1,液固质量比2∶1时,总稀土浸出率达到65.1%,非铈稀土浸出率为93.3%,浸出渣中CeO2/TREO为94.1%。本工艺简化了工艺流程,节省了大量化工原料消耗,降低了成本,整个过程实现了无氟排放,具有低消耗、高效能等特点,取得了良好的环保、经济和社会效益。  相似文献   

20.
采用钙热还原法生产稀土金属时会产生大量的稀土冶炼渣,渣中稀土的存在形式包括稀土金属单质、稀土氧化物和稀土氟化物,其中的稀土金属和稀土氧化物易于被无机酸直接浸出,而氟化稀土则难被酸浸出,成为从钙热还原稀土冶炼渣中高效回收稀土的瓶颈。在工业生产氟化钠晶体方法的启发下,开发了九水硅酸钠焙烧-HCl浸出提取钙热还原稀土冶炼渣中稀土的方法,通过九水硅酸钠焙烧钙热还原稀土冶炼渣,将渣中稀土氟化物转型为易溶于酸的稀土氧化物,而氟元素则转型为Na F被水洗除去,实现了稀土和氟的高效分离。考察了焙烧温度、时间和HCl浓度等因素对稀土提取率的影响,结果表明:在焙烧温度为850℃,焙烧时间为2 h,九水硅酸钠与钙热还原渣质量比为1∶1,酸浸温度为60℃,酸浸时间为1. 5 h,HCl浓度为4 mol·L~(-1),液固比为11∶1的条件下,稀土提取率高达99. 06%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号