首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 116 毫秒
1.
超高分子量聚乙烯(UHMWPE)纤维具有诸多优异性能,因此被广泛应用于纤维增强复合材料(FRP)。但是由于UHMWPE纤维表面光滑且无极性基团,与树脂基体粘接性差,可通过纤维表面改性有效提高FRP的界面强度,进而提升材料性能。本文总结了近几年基于化学处理、等离子体处理、电晕放电和辐射引发表面接枝等方法对UHMWPE纤维表面改性的研究进展,并对改性方法的发展进行了展望。  相似文献   

2.
任煜  张银  王晓娜  臧传锋  张伟 《高分子学报》2016,(10):1439-1446
利用空气介质阻挡放电(DBD)等离子体对超高分子量聚乙烯(UHMWPE)纤维进行表面改性处理研究以提高纤维表面的润湿和粘结性能.分别研究了等离子体处理时间及电压对UHMWPE纤维拉伸断裂强力、接触角、表面形貌、表面化学成分和粘结性能等的影响规律.SEM分析结果表明,空气DBD等离子体处理后UHMWPE纤维表面出现垂直于纤维轴向分布的凹坑和裂纹,使得纤维表面粗糙度显著增加.XPS分析表明空气DBD处理后纤维表面碳元素含量显著下降;同时氧元素和氮元素的含量均较处理前增加,但氧元素含量增加的幅度显著高于氮元素.XPS分峰结果表明等离子体处理后UHMWPE纤维纤维表面C—O/C—N基团含量显著增加,同时出现了C O和O—C O这2种新的含氧官能团.同时,接触角及和与环氧树脂之间的界面剪切力(IFSS)测试结果表明DBD等离子体处理后UHMWPE纤维表面润湿性能和粘结力均产生显著提高,且随着等离子体处理时间或电压的增加,UHMWPE纤维的表面润湿性能和粘结力均呈现先上升后下降的趋势.空气DBD等离子体处理对UHMWPE纤维的力学性能影响较小,当处理电压低于200 V,处理时间小于100 s,纤维强力下降比率小于5.2%.  相似文献   

3.
提高PBO纤维/环氧树脂复合材料界面结合的研究   总被引:2,自引:0,他引:2  
本文采用表面化学蚀刻与溶胀法结合、化学偶联法与氩气低温等离子体表面处理技术结合的方法对聚苯撑苯并二。唑(PBO)纤维进行表面改性。探讨了不同改性方法对纤维表面性能的影响。同时,采用FTIR和SEM等方法对处理前后纤维表面化学结构及形态进行了表征。  相似文献   

4.
采用电感耦合射频等离子体(ICP)和介质阻挡放电(DBD)低温等离子体对高性能连续纤维表面进行改性,分别采用X光电子能谱(XPS)、原子力显微镜(AFM)和动态接触角测定仪(DCA)等分析测试手段系统地研究了等离子体处理时间、放电功率、放电气压等对连续碳纤维、聚苯并二噁唑(PBO)纤维改性处理前后,纤维表面状态、表面组成、表面形貌、浸润性能的变化规律以及经等离子体处理前后纤维增强双马树脂基复合材料界面结构与性能的影响关系及变化规律、复合材料界面粘结和破坏机理.研究结果表明,经过等离子体处理后,纤维表面接枝上了大量的含羧基、羟基等极性官能团,表面粗糙度增加,表面自由能增加,纤维浸润性能得到明显改善,导致纤维与双马树脂基体界面层间剪切强度(ILSS)明显提高,复合材料的破坏模式由未处理的界面脱粘破坏转变为等离子体处理后的树脂基体破坏.最后,对纤维表面时效性及其对纤维增强双马树脂基复合材料界面性能的影响关系也进行了论述.  相似文献   

5.
低温等离子体表面改质技术,近年来在纤维加工领域的应用引起广泛注目。纤维、高分子材料经低温等离子体处理,在纤维基质中生成自由基。这些自由基同活性原子团一样,其中不稳定的自由基迅速重新结合,而稳定的自由基就残留在纤维基质中。本文研究了天然纤维棉、麻、羊毛和蚕丝分别在O_2、N_2、Ar、CO及CF_4气体中的低温等离子体表面改质处理,用ESR光谱测定了纤维基质中生成的自由基的相对强度,并讨论了热处理对自由基稳定性的影响。  相似文献   

6.
Ar等离子体对氟橡胶F2311表面的改性   总被引:2,自引:0,他引:2  
利用氩气等离子对氟橡胶F2311进行表面亲水改性处理,通过接触角测量、X射线光电子能谱(XPS)对改性后的F2311进行分析,结果表明氩气等离子体处理可通过等离子体聚合在F2311表面形成含碳、氧、氮的覆盖层,可较好地改善F2311的表面亲水性,并有较好的表面动力学性质,获得的表面亲水性可以保持很长时间。  相似文献   

7.
聚乙丙交酯电纺纳米纤维膜的等离子体改性及性能研究   总被引:1,自引:0,他引:1  
采用等离子体表面处理的方法, 通过正交实验设计, 以纤维膜表面引入的氮含量为响应变量, 确定了NH3等离子体改性PLGA电纺纤维膜的最佳条件, 并在PLGA纤维膜表面成功地引入了功能性氨基基团. 研究结果表明, 改性后PLGA电纺纤维膜的力学性能有所降低, 但表面亲水性明显增强.  相似文献   

8.
通过低温等离子体表面改性技术对疏水性聚丙烯酸酯人工晶状体进行表面改性, 并对改性前后材料的表面结构、形貌和光学性能进行了表征. 静态水接触角结果显示, 经过氨等离子体处理后的人工晶状体亲水性效果最好, 同时最佳的改性时间为120 s, 改性功率为150 W. XPS分析结果进一步证实, 经等离子体处理后, 在人工晶状体表面引入了极性基团. 原子显微镜观察结果显示, 改性后材料表面更加凹凸不平, 粗糙度显著增加而透光率变化很小, 但过大功率改性的样品透光率明显下降. 时效性测试结果表明, 人工晶状体在改性14 d后疏水性恢复趋于稳定.  相似文献   

9.
利用氨气低温等离子体对壳聚糖聚丙烯腈复合膜进行表面改性,制成了在低压、弱酸条件下,带正电荷的壳聚糖一聚丙烯腈复合纳滤膜。探讨了等离子处理时间、放电功率对膜亲水性改善效果的影响,采用单因素实验确定了最佳等离子体处理条件。通过扫描探针显微镜、接触角测试、表面光电子能谱检测等手段对膜表面进行了表征。经过等离体改性后,复合膜的亲水性及纳滤性能均大幅提高。改性后,在0.05MPa、pH≈6.7条件下,壳聚糖一聚丙烯腈复合膜对0.1mol/L的),一氨基丁酸溶液的通量为3.19L/(m^2·h),截留率为78%。  相似文献   

10.
介绍了PBO(聚对苯撑苯并双噁唑)纤维的结构与性能,并针对该纤维作为复合材料增强体与树脂界面粘结性差的特点,评述了PBO纤维表面改性技术中的化学法、共聚改性、偶联剂处理、等离子处理、电晕处理和辐射处理法的研究进展,并比较了各种方法的改性效果及各自优缺点。  相似文献   

11.
Aramid fibers and ultra-high molecular weight polyethylene (UHMWPE) fibers lack active surface functional groups, and the surface is smooth, limiting their practical application in textile composite materials. In this study, zinc oxide nanorods were used to grow on aramid fibers surfaces, and oxygen plasma followed by treatment with a silane coupling agent was used to modify UHMWPE fibers. The effects of surface modification on the surface morphology and composition, and mechanical properties of fibers and composites were investigated. The mechanical response of interlayer hybrid textile composite materials based on modified aramid and UHMWPE fabrics was examined. The results reveal that surface roughness, active surface functional groups, and wettability that can be controlled by treatment conditions and parameters are important for improving interface adhesion. In addition, the interlayer hybridization pattern as a result of using dissimilar layer materials and altering stacking sequence has a great impact on the mechanical behavior of hybrid textile composite materials.  相似文献   

12.
等离子接枝处理超高分子量聚乙烯纤维   总被引:10,自引:0,他引:10  
利用等离子接枝法对超高分子量聚乙烯纤维进行表面处理,在纤维表面产生活性官能团,并用紫外分析、红外分析探讨了纤维表面官能团的产生及变化。通过测定纤维复合材料层间剪切强度验证结构与性能的关系。  相似文献   

13.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

14.
Ultra‐high molecular weight polyethylene (UHMWPE) fibers were modified by chromic acid. The effects of surface modification were evaluated with Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscope (SEM). The results showed that both the content of O‐containing functional groups and surface roughness of modified fibers increased. The polar groups on the modified fiber surface decreased the contact angles with water and ethylene glycol, as evidenced by contact angle measurement. The tensile test results showed the strength and the elongation at break of UHMWPE fibers decreased but the modulus increased after chromic acid modification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Ultrahigh molecular weight polyethylene (UHMWPE) fibers exhibit excellent mechanical property, but their low surface activity limits the application in many fields. In this work, an efficient method was used to improve the surface activity and adhesion property of UHMWPE fibers. The amine functionalized UHMWPE fibers were prepared by the combination of bio‐inspired polydopamine (PDA) and grafted hexamethylene diamine (HMDA). The chemical structure of UHMWPE fibers was characterized by X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy. The surface morphologies and mechanical property of the fibers were investigated by scanning electron microscopy and tensile testing respectively. In addition, a single‐fiber pull‐out test was carried out to investigate the adhesion property of the fibers with epoxy resin matrix. The results showed that PDA was coated on the surface of UHMWPE fibers and then HMDA was successfully grafted on the PDA layers. The excellent mechanical property of UHMWPE fibers had no obvious change. Compared with the pristine UHMWPE fibers, the interfacial shear strength of the PDA coated UHMWPE fibers with the epoxy resin matrix improved by 28.3%, while the IFSS of the HMDA grafted UHMWPE fibers had an increase of 82.7%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fibers have been modified by plasma treatment to increase adhesion in high‐density polyethylene (HDPE) matrices. Results showed that surface roughness predominates for modified UHMWPE fibers, indicating that the plasma treatment favors the interaction with HDPE. Unmodified HDPE composite samples gave a lower interlaminar shear strength than did the samples that were incorporated with UHMWPE. The addition of unmodified UHMWPE fibers to the neat HDPE significantly increases interlaminar shear strengths of composites, up to 20 vol%. The oxygen concentration increased from 16.16 %to 21.99%, and the ratio of oxygen to carbon atoms increased significantly from 0.194 to 0.284 after oxygen plasma treatment for 5 minutes with a power of 300 W.  相似文献   

17.
In this study, helium/oxygen/nitrogen (He/O2/N2)‐plasma was used to etch/modify the surface of ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber. After coated with polyurethane (PU), the plasma treated UHMWPE fabrics were laminated. It was found that the values of peeling strength between the laminated UHMWPE fabrics treated with He/O2/N2‐plasma were significantly higher (3–4 times) than that between pristine fabrics. The hydrophilic property and the value of the surface roughness of the UHMWPE fibers increased significantly after treated with He/O2/N2‐plasma. The mechanism of the oxidation/degradation of the polymers on the surface of the UHMWPE fiber during He/O2/N2‐plasma treatment was suggested. In addition, it was found that the higher content of functional groups (carbonyl, aldehyde, and carboxylic acid) on fiber surface and the higher value of surface roughness of the UHMWPE fiber treated with He/O2/N2‐plasma could significantly improve the adhesion‐strength of the laminated UHMWPE fabric. Especially, the micro‐aperture on the surface of UHMWPE fiber caused by the strenuous etching of He/O2/N2‐plasma treatment was also an important factor on improving the adhesion‐strength between the laminated UHMWPE fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

19.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号